Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$
$begingroup$
Can you help me check if this proof is correct? If not, kindly provide a better proof
Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$
Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}
real-analysis integration analysis proof-verification riemann-integration
$endgroup$
add a comment |
$begingroup$
Can you help me check if this proof is correct? If not, kindly provide a better proof
Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$
Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}
real-analysis integration analysis proof-verification riemann-integration
$endgroup$
1
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02
add a comment |
$begingroup$
Can you help me check if this proof is correct? If not, kindly provide a better proof
Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$
Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}
real-analysis integration analysis proof-verification riemann-integration
$endgroup$
Can you help me check if this proof is correct? If not, kindly provide a better proof
Prove that if $f$ is continuous at $x_0in [a,b]$ and $f(x_0)neq 0,$ then $suplimits_{P}L(|f|,P)>0$
Suppose $a<b$. For $epsilon=|f(x_0)|/2,$ there exists $delta>0$ such that $$|f(x)|>dfrac{1}{2}|f(x_0)|,;;text{whenever};;xin(x_0-delta,x_0+delta).$$
Choose a uniform partition $P_n$, for each $n,$ such that
$$a=x_0<x_1<cdots<x_n=b;;text{and};;x_j-x_{j-1}=(b-a)/n,;;jin {1,2,cdots,n}.$$
Hence,
begin{align}suplimits_{P_n}L(|f|,P_n)&= limlimits_{nto infty}sum^{n}_{j=1}|f(t_j)|(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}sum^{n}_{j=1}(x_j-x_{j-1})\&geq dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(x_n-x_{0})\&= dfrac{1}{2}|f(x_0)|limlimits_{nto infty}(b-a)\&= dfrac{1}{2}|f(x_0)|(b-a)\&>0end{align}
real-analysis integration analysis proof-verification riemann-integration
real-analysis integration analysis proof-verification riemann-integration
edited Jan 16 at 5:18
Omojola Micheal
asked Jan 15 at 22:53
Omojola MichealOmojola Micheal
2,082424
2,082424
1
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02
add a comment |
1
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02
1
1
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.
Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.
$endgroup$
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
|
show 1 more comment
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075081%2fprove-that-if-f-is-continuous-at-x-0-in-a-b-and-fx-0-neq-0-then-sup%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.
Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.
$endgroup$
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
|
show 1 more comment
$begingroup$
No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.
Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.
$endgroup$
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
|
show 1 more comment
$begingroup$
No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.
Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.
$endgroup$
No, it is not correct. That inequality containg the second $geqslant$ doesn't hold; you seem to be assuming here that each $m_j$ is greter than or equal to $frac12bigllvert f(x_0)bigrrvert$, but that is not true.
Note that you only have to proved an example of one partition $P_0$ such that $Lbigl(lvert frvert,P_0bigr)>0$. Then it will follow automatically that $displaystylesup_PLbigl(lvert frvert,Pbigr)>0$.
answered Jan 15 at 23:01
José Carlos SantosJosé Carlos Santos
177k24139251
177k24139251
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
|
show 1 more comment
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Okay, let me edit it.
$endgroup$
– Omojola Micheal
Jan 15 at 23:04
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Please, how about now?
$endgroup$
– Omojola Micheal
Jan 15 at 23:05
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
Why do you think that $bigllvert f(t_j)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrrvert$ for each $j$? There is no reason for that.
$endgroup$
– José Carlos Santos
Jan 15 at 23:07
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
So, what should I do?
$endgroup$
– Omojola Micheal
Jan 15 at 23:10
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
$begingroup$
If you take $a_1,b_1in[a,b]$ such that $a<a_1<x_0<b_1<b$ and that $(forall xin[a_1,b_1]):bigllvert f(x)bigrrvertgeqslantfrac12bigllvert f(x_0)bigrvert$ and if $P_0={a,a_1,b_1,b}$, then$$Lbigl(lvert frvert,P_0bigr)=frac12bigllvert f(x_0)bigrvert(b_1-a_1)>0.$$
$endgroup$
– José Carlos Santos
Jan 15 at 23:12
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075081%2fprove-that-if-f-is-continuous-at-x-0-in-a-b-and-fx-0-neq-0-then-sup%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Please put the statement you're trying to prove in the question itself, not just as the title. Without it, your post is hard to understand.
$endgroup$
– Michael Burr
Jan 15 at 22:59
$begingroup$
@Michael Burr: I'll do that!
$endgroup$
– Omojola Micheal
Jan 15 at 23:02