Calculate inverse of matrix with -1 on diagonal and 1 on the rest
up vote
1
down vote
favorite
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
add a comment |
up vote
1
down vote
favorite
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
Calculate the inverse of the matrix
begin{bmatrix}
-1& 1& ...& ...&1 \
1& -1& 1& ... &1 \
...& ...& ...& ...&1 \
1&1 &1 & ...&1 \
1& 1 &1 &1 &-1
end{bmatrix}
$-1$ on the diagonal and $1$ on the rest.
The key I think is to perform a sequence of elementary transformations on
[ A | $I_{n}$ ] until we get [ $I_{n}$ | $A^{-1}$ ] but that seems to be complicated.
matrices inverse
matrices inverse
asked 2 days ago
SADBOYS
4138
4138
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago
add a comment |
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
up vote
3
down vote
accepted
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
add a comment |
up vote
2
down vote
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
add a comment |
up vote
1
down vote
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
add a comment |
up vote
3
down vote
accepted
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
Let $e$ be the all one vector. We have
$$A=-2I+ee^T$$
By Sheman-Morrison formula:
begin{align}A^{-1}&=(-2I+ee^T)^{-1}\&=-frac12I-frac{-left(frac12Iright)ee^Tleft(-frac12Iright)}{1+e^Tleft( -frac12Iright)e} \
&=-frac12I-frac{frac14ee^T}{1-frac{n}2} \
&=-frac12I-frac{ee^T}{4-2n}
end{align}
Hence, the off diagonal entries are $-frac1{4-2n}$ and the diagonal entries are $-frac12-frac1{4-2n}$.
Remark: If $n=2$, the matrix is not invertible.
answered 2 days ago
Siong Thye Goh
95.4k1462116
95.4k1462116
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
add a comment |
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
Because the determinant is $-2^{n-1}(n-2)$ I think, thanks for the help^^
– SADBOYS
2 days ago
add a comment |
up vote
2
down vote
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
add a comment |
up vote
2
down vote
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
add a comment |
up vote
2
down vote
up vote
2
down vote
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
The inverse also has a constant $a$ on the main diagonal and $b$ everywhere else. The constants do depend on the matrix size $n;$ as noted, for $n=2$ there is no inverse. Just try the thing for $n=3$ and $n=4$ and $n=5.$ By that time you should have it, for $n geq 3$
for $n=3:$
$$
left(
begin{array}{rrr}
-1 & 1&1 \
1 & -1&1 \
1 & 1&-1 \
end{array}
right)
left(
begin{array}{ccc}
a & b&b \
b & a&b \
b & b&a \
end{array}
right)=
left(
begin{array}{rrr}
1 & 0&0 \
0 & 1&0 \
0 & 0&1 \
end{array}
right)
$$
for $n=4,$ different $a,b:$
$$
left(
begin{array}{rrrr}
-1 & 1&1&1 \
1 & -1&1&1 \
1 & 1&-1&1 \
1 & 1&1&-1 \
end{array}
right)
left(
begin{array}{cccc}
a & b&b&b \
b & a&b&b \
b & b&a&b \
b & b&b&a \
end{array}
right)=
left(
begin{array}{rrrr}
1 & 0&0&0 \
0 & 1&0&0 \
0 & 0&1&0 \
0 & 0&0&1 \
end{array}
right)
$$
for $n=5,$ still different $a,b:$
$$
left(
begin{array}{rrrrr}
-1 & 1&1&1&1 \
1 & -1&1&1&1 \
1 & 1&-1&1&1 \
1 & 1&1&-1&1 \
1&1&1&1&-1 \
end{array}
right)
left(
begin{array}{ccccc}
a & b&b&b &b\
b & a&b&b&b \
b & b&a&b &b \
b & b&b&a &b \
b&b&b&b&a \
end{array}
right)=
left(
begin{array}{rrrrr}
1 & 0&0&0 &0 \
0 & 1&0&0&0 \
0 & 0&1&0 &0 \
0 & 0&0&1 &0 \
0&0&0&0&1
end{array}
right)
$$
edited 2 days ago
answered 2 days ago
Will Jagy
101k597198
101k597198
add a comment |
add a comment |
up vote
1
down vote
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
add a comment |
up vote
1
down vote
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
add a comment |
up vote
1
down vote
up vote
1
down vote
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
It's not too bad...
$$begin{array}{c}-1\-1\vdots\*
end{array}left[begin{array}{cccc|cccc}
-1&1&cdots&1 &1\
1&-1&cdots&1 &&1\
vdots&vdots&ddots&vdots &&&ddots\
1&1&cdots&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*\*\vdots\small 1/2end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
1&1&&-1 &&&&1
end{array}right] implies$$
$$begin{array}{c}*small -1/2\*small -1/2\vdots\* small ^1!/_{!n-2}end{array}
left[begin{array}{cccc|cccc}
-2&&&2 &1&&&-1\
&-2&&2 &&1&&-1\
&&ddots& &&&ddots\
&&&n-2 &small 1/2&small 1/2&&small-^{(n-3)!}/_{!2}
end{array}right] implies$$
$$begin{array}{c}1\1\vdots\*end{array}
left[begin{array}{cccc|cccc}
1&&&-1 &small -1/2&&&small 1/2\
&1&&-1 &&small -1/2&&small 1/2\
&&ddots& &&&ddots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right] implies$$
$$begin{array}{c} \ \ \ end{array}
left[begin{array}{cccc|cccc}
1&&& &small -^1!/_{!2}+ ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&1&& &small ^1!/_{!2(n-2)}&small -^1!/_{!2}+ ^1!/_{!2(n-2)}&cdots&small ^1!/_{!2(n-2)}\
&&ddots& &vdots&vdots&ddots&vdots\
&&&1 &small ^1!/_{!2(n-2)}&small ^1!/_{!2(n-2)}&cdots&small -^1!/_{!2}+ ^1!/_{!2(n-2)}
end{array}right]$$
answered 2 days ago
I like Serena
3,3181718
3,3181718
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020465%2fcalculate-inverse-of-matrix-with-1-on-diagonal-and-1-on-the-rest%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Your matrix can be expressed as $A+uv^top$ (see this answer. Then use the Sherman-Morrison formula.
– StubbornAtom
2 days ago