Evaluate $int frac{sqrt{64x^2-256}}{x},dx$











up vote
0
down vote

favorite













$$int frac{sqrt{64x^2-256}}{x},dx$$




Image.



I've tried this problem multiple times and cant seem to find where I made a mistake. If someone could please help explain where I went wrong I would really appreciate it



enter image description here




$newcommand{dd}{; mathrm{d}}int frac{sqrt{64x^2-256}}x dd x to
int frac{sqrt{64(x^2-4)}}x dd x to
int frac{8sqrt{x^2-4}}x dd x$



Use $x=asectheta$, $dd x=asectheta tantheta dd theta$.



$a=2$ $to$ $x=2sectheta$, $dd x=2sectheta tantheta dd theta$.



$=int frac{8sqrt{4sec^2theta-4}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8sqrt{4(sec^2theta-1)}}{2sectheta}(2secthetatantheta) dd theta $



$=int frac{8sqrt{4tan^2theta}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8(2tantheta)}{2sectheta}(2secthetatantheta) dd theta$



$=int 16tan^2theta dd theta to
16inttan^2theta dd theta to
underset{text{trig. formula}}{underbrace{16(theta+tantheta)+C}}$



$Rightarrow 16(tantheta-theta)+C = 16tantheta-16theta$



$x=2sectheta$, $sectheta= frac x2$



$boxed{16tanleft(frac{sqrt{x^2-4}}2right) -16sec^{-1}left(frac x2right)+C}$











share|cite|improve this question
























  • Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
    – Em.
    Jul 13 '16 at 4:07






  • 3




    The substitution $x=frac{2}{sintheta}$ gives an easy integral.
    – Jack D'Aurizio
    Jul 13 '16 at 4:09










  • I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
    – Martin Sleziak
    Jul 27 '16 at 8:51















up vote
0
down vote

favorite













$$int frac{sqrt{64x^2-256}}{x},dx$$




Image.



I've tried this problem multiple times and cant seem to find where I made a mistake. If someone could please help explain where I went wrong I would really appreciate it



enter image description here




$newcommand{dd}{; mathrm{d}}int frac{sqrt{64x^2-256}}x dd x to
int frac{sqrt{64(x^2-4)}}x dd x to
int frac{8sqrt{x^2-4}}x dd x$



Use $x=asectheta$, $dd x=asectheta tantheta dd theta$.



$a=2$ $to$ $x=2sectheta$, $dd x=2sectheta tantheta dd theta$.



$=int frac{8sqrt{4sec^2theta-4}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8sqrt{4(sec^2theta-1)}}{2sectheta}(2secthetatantheta) dd theta $



$=int frac{8sqrt{4tan^2theta}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8(2tantheta)}{2sectheta}(2secthetatantheta) dd theta$



$=int 16tan^2theta dd theta to
16inttan^2theta dd theta to
underset{text{trig. formula}}{underbrace{16(theta+tantheta)+C}}$



$Rightarrow 16(tantheta-theta)+C = 16tantheta-16theta$



$x=2sectheta$, $sectheta= frac x2$



$boxed{16tanleft(frac{sqrt{x^2-4}}2right) -16sec^{-1}left(frac x2right)+C}$











share|cite|improve this question
























  • Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
    – Em.
    Jul 13 '16 at 4:07






  • 3




    The substitution $x=frac{2}{sintheta}$ gives an easy integral.
    – Jack D'Aurizio
    Jul 13 '16 at 4:09










  • I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
    – Martin Sleziak
    Jul 27 '16 at 8:51













up vote
0
down vote

favorite









up vote
0
down vote

favorite












$$int frac{sqrt{64x^2-256}}{x},dx$$




Image.



I've tried this problem multiple times and cant seem to find where I made a mistake. If someone could please help explain where I went wrong I would really appreciate it



enter image description here




$newcommand{dd}{; mathrm{d}}int frac{sqrt{64x^2-256}}x dd x to
int frac{sqrt{64(x^2-4)}}x dd x to
int frac{8sqrt{x^2-4}}x dd x$



Use $x=asectheta$, $dd x=asectheta tantheta dd theta$.



$a=2$ $to$ $x=2sectheta$, $dd x=2sectheta tantheta dd theta$.



$=int frac{8sqrt{4sec^2theta-4}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8sqrt{4(sec^2theta-1)}}{2sectheta}(2secthetatantheta) dd theta $



$=int frac{8sqrt{4tan^2theta}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8(2tantheta)}{2sectheta}(2secthetatantheta) dd theta$



$=int 16tan^2theta dd theta to
16inttan^2theta dd theta to
underset{text{trig. formula}}{underbrace{16(theta+tantheta)+C}}$



$Rightarrow 16(tantheta-theta)+C = 16tantheta-16theta$



$x=2sectheta$, $sectheta= frac x2$



$boxed{16tanleft(frac{sqrt{x^2-4}}2right) -16sec^{-1}left(frac x2right)+C}$











share|cite|improve this question
















$$int frac{sqrt{64x^2-256}}{x},dx$$




Image.



I've tried this problem multiple times and cant seem to find where I made a mistake. If someone could please help explain where I went wrong I would really appreciate it



enter image description here




$newcommand{dd}{; mathrm{d}}int frac{sqrt{64x^2-256}}x dd x to
int frac{sqrt{64(x^2-4)}}x dd x to
int frac{8sqrt{x^2-4}}x dd x$



Use $x=asectheta$, $dd x=asectheta tantheta dd theta$.



$a=2$ $to$ $x=2sectheta$, $dd x=2sectheta tantheta dd theta$.



$=int frac{8sqrt{4sec^2theta-4}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8sqrt{4(sec^2theta-1)}}{2sectheta}(2secthetatantheta) dd theta $



$=int frac{8sqrt{4tan^2theta}}{2sectheta}(2secthetatantheta) dd theta to
int frac{8(2tantheta)}{2sectheta}(2secthetatantheta) dd theta$



$=int 16tan^2theta dd theta to
16inttan^2theta dd theta to
underset{text{trig. formula}}{underbrace{16(theta+tantheta)+C}}$



$Rightarrow 16(tantheta-theta)+C = 16tantheta-16theta$



$x=2sectheta$, $sectheta= frac x2$



$boxed{16tanleft(frac{sqrt{x^2-4}}2right) -16sec^{-1}left(frac x2right)+C}$








calculus integration indefinite-integrals radicals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 27 '16 at 8:50









Martin Sleziak

44.5k7115268




44.5k7115268










asked Jul 13 '16 at 4:03









cchang

11




11












  • Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
    – Em.
    Jul 13 '16 at 4:07






  • 3




    The substitution $x=frac{2}{sintheta}$ gives an easy integral.
    – Jack D'Aurizio
    Jul 13 '16 at 4:09










  • I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
    – Martin Sleziak
    Jul 27 '16 at 8:51


















  • Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
    – Em.
    Jul 13 '16 at 4:07






  • 3




    The substitution $x=frac{2}{sintheta}$ gives an easy integral.
    – Jack D'Aurizio
    Jul 13 '16 at 4:09










  • I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
    – Martin Sleziak
    Jul 27 '16 at 8:51
















Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
– Em.
Jul 13 '16 at 4:07




Poor quality images of handwritten work are usually received poorly on Math SE. Try to type up all your work in your posts. Formatting tips here.
– Em.
Jul 13 '16 at 4:07




3




3




The substitution $x=frac{2}{sintheta}$ gives an easy integral.
– Jack D'Aurizio
Jul 13 '16 at 4:09




The substitution $x=frac{2}{sintheta}$ gives an easy integral.
– Jack D'Aurizio
Jul 13 '16 at 4:09












I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
– Martin Sleziak
Jul 27 '16 at 8:51




I have tried to edit your attempt based on the images you posted. This should make it easier for you to edit it further into the form which really reflects what you want to say.
– Martin Sleziak
Jul 27 '16 at 8:51










3 Answers
3






active

oldest

votes

















up vote
5
down vote













Since I am almost blind, I have a lot of problems reading the image.



Consider $$I=int frac{sqrt{64 x^2-256}}{x},dx$$ What you apparently did is $x=2sec(t)$, $dx=2 tan (t) sec (t)$ which make $$I=int tan (t) sqrt{256 sec ^2(t)-256},dt=16int tan (t) sqrt{tan ^2(t)},dt=16int tan^2 (t) ,dt$$ $$I=16int (1+tan^2(t)-1),dt=16 (tan (t)-t)$$






share|cite|improve this answer





















  • Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
    – cchang
    Jul 13 '16 at 4:38










  • If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
    – Claude Leibovici
    Jul 13 '16 at 4:45


















up vote
1
down vote













$$dfrac{sqrt{64x^2-256}}x=8xcdotdfrac{sqrt{x^2-4}}{x^2}$$



Let $sqrt{x^2-4}=yimplies x^2-4=y^2implies x dx= y dy$



$$intdfrac{sqrt{64x^2-256}}xdx=8intdfrac{y^2dy}{y^2+4}=8int dy-32intdfrac{dy}{y^2+4}=?$$






share|cite|improve this answer























  • @user376343,Thanks for your feedback
    – lab bhattacharjee
    2 days ago


















up vote
0
down vote













$newcommand{angles}[1]{leftlangle,{#1},rightrangle}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{Li}[1]{,mathrm{Li}}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$




With the
sub$ds{ldots t equiv x - root{x^{2} - 4} imp
x = {t^{2} + 4 over 2t}}$:







begin{align}
&color{#f00}{int{root{64x^{2} - 256} over x},dd x} =
8int{root{x^{2} - 4} over x},dd x =
8intpars{{8 over t^{2} + 4} - {16 over t^{2}} + 3},dd t
\[3mm] = &
32arctanpars{t over 2} + {128 over t} + 24t
\[3mm] = &
32arctanpars{x - root{x^{2} - 4} over 2} + {128 over x - root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
\[3mm] = &
32arctanpars{x - root{x^{2} - 4} over 2} +
32pars{x + root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
\[3mm] = &
color{#f00}{32arctanpars{x - root{x^{2} - 4} over 2} +
56x + 8root{x^{2} - 4}} + pars{~mbox{a constant}~}
end{align}




share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1857798%2fevaluate-int-frac-sqrt64x2-256x-dx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    5
    down vote













    Since I am almost blind, I have a lot of problems reading the image.



    Consider $$I=int frac{sqrt{64 x^2-256}}{x},dx$$ What you apparently did is $x=2sec(t)$, $dx=2 tan (t) sec (t)$ which make $$I=int tan (t) sqrt{256 sec ^2(t)-256},dt=16int tan (t) sqrt{tan ^2(t)},dt=16int tan^2 (t) ,dt$$ $$I=16int (1+tan^2(t)-1),dt=16 (tan (t)-t)$$






    share|cite|improve this answer





















    • Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
      – cchang
      Jul 13 '16 at 4:38










    • If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
      – Claude Leibovici
      Jul 13 '16 at 4:45















    up vote
    5
    down vote













    Since I am almost blind, I have a lot of problems reading the image.



    Consider $$I=int frac{sqrt{64 x^2-256}}{x},dx$$ What you apparently did is $x=2sec(t)$, $dx=2 tan (t) sec (t)$ which make $$I=int tan (t) sqrt{256 sec ^2(t)-256},dt=16int tan (t) sqrt{tan ^2(t)},dt=16int tan^2 (t) ,dt$$ $$I=16int (1+tan^2(t)-1),dt=16 (tan (t)-t)$$






    share|cite|improve this answer





















    • Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
      – cchang
      Jul 13 '16 at 4:38










    • If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
      – Claude Leibovici
      Jul 13 '16 at 4:45













    up vote
    5
    down vote










    up vote
    5
    down vote









    Since I am almost blind, I have a lot of problems reading the image.



    Consider $$I=int frac{sqrt{64 x^2-256}}{x},dx$$ What you apparently did is $x=2sec(t)$, $dx=2 tan (t) sec (t)$ which make $$I=int tan (t) sqrt{256 sec ^2(t)-256},dt=16int tan (t) sqrt{tan ^2(t)},dt=16int tan^2 (t) ,dt$$ $$I=16int (1+tan^2(t)-1),dt=16 (tan (t)-t)$$






    share|cite|improve this answer












    Since I am almost blind, I have a lot of problems reading the image.



    Consider $$I=int frac{sqrt{64 x^2-256}}{x},dx$$ What you apparently did is $x=2sec(t)$, $dx=2 tan (t) sec (t)$ which make $$I=int tan (t) sqrt{256 sec ^2(t)-256},dt=16int tan (t) sqrt{tan ^2(t)},dt=16int tan^2 (t) ,dt$$ $$I=16int (1+tan^2(t)-1),dt=16 (tan (t)-t)$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jul 13 '16 at 4:25









    Claude Leibovici

    117k1156131




    117k1156131












    • Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
      – cchang
      Jul 13 '16 at 4:38










    • If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
      – Claude Leibovici
      Jul 13 '16 at 4:45


















    • Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
      – cchang
      Jul 13 '16 at 4:38










    • If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
      – Claude Leibovici
      Jul 13 '16 at 4:45
















    Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
    – cchang
    Jul 13 '16 at 4:38




    Hi i did this and found t to equal arcsec(x/2) but when I plugged this into the equation it says that the answer isn't correct.
    – cchang
    Jul 13 '16 at 4:38












    If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
    – Claude Leibovici
    Jul 13 '16 at 4:45




    If you properly replace $t$, you should arrive to $2 sqrt{x^2-64}+16 tan ^{-1}left(frac{8}{sqrt{x^2-64}}right)$
    – Claude Leibovici
    Jul 13 '16 at 4:45










    up vote
    1
    down vote













    $$dfrac{sqrt{64x^2-256}}x=8xcdotdfrac{sqrt{x^2-4}}{x^2}$$



    Let $sqrt{x^2-4}=yimplies x^2-4=y^2implies x dx= y dy$



    $$intdfrac{sqrt{64x^2-256}}xdx=8intdfrac{y^2dy}{y^2+4}=8int dy-32intdfrac{dy}{y^2+4}=?$$






    share|cite|improve this answer























    • @user376343,Thanks for your feedback
      – lab bhattacharjee
      2 days ago















    up vote
    1
    down vote













    $$dfrac{sqrt{64x^2-256}}x=8xcdotdfrac{sqrt{x^2-4}}{x^2}$$



    Let $sqrt{x^2-4}=yimplies x^2-4=y^2implies x dx= y dy$



    $$intdfrac{sqrt{64x^2-256}}xdx=8intdfrac{y^2dy}{y^2+4}=8int dy-32intdfrac{dy}{y^2+4}=?$$






    share|cite|improve this answer























    • @user376343,Thanks for your feedback
      – lab bhattacharjee
      2 days ago













    up vote
    1
    down vote










    up vote
    1
    down vote









    $$dfrac{sqrt{64x^2-256}}x=8xcdotdfrac{sqrt{x^2-4}}{x^2}$$



    Let $sqrt{x^2-4}=yimplies x^2-4=y^2implies x dx= y dy$



    $$intdfrac{sqrt{64x^2-256}}xdx=8intdfrac{y^2dy}{y^2+4}=8int dy-32intdfrac{dy}{y^2+4}=?$$






    share|cite|improve this answer














    $$dfrac{sqrt{64x^2-256}}x=8xcdotdfrac{sqrt{x^2-4}}{x^2}$$



    Let $sqrt{x^2-4}=yimplies x^2-4=y^2implies x dx= y dy$



    $$intdfrac{sqrt{64x^2-256}}xdx=8intdfrac{y^2dy}{y^2+4}=8int dy-32intdfrac{dy}{y^2+4}=?$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 2 days ago

























    answered Jul 13 '16 at 6:05









    lab bhattacharjee

    221k15154271




    221k15154271












    • @user376343,Thanks for your feedback
      – lab bhattacharjee
      2 days ago


















    • @user376343,Thanks for your feedback
      – lab bhattacharjee
      2 days ago
















    @user376343,Thanks for your feedback
    – lab bhattacharjee
    2 days ago




    @user376343,Thanks for your feedback
    – lab bhattacharjee
    2 days ago










    up vote
    0
    down vote













    $newcommand{angles}[1]{leftlangle,{#1},rightrangle}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{half}{{1 over 2}}
    newcommand{ic}{mathrm{i}}
    newcommand{iff}{Longleftrightarrow}
    newcommand{imp}{Longrightarrow}
    newcommand{Li}[1]{,mathrm{Li}}
    newcommand{ol}[1]{overline{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{ul}[1]{underline{#1}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$




    With the
    sub$ds{ldots t equiv x - root{x^{2} - 4} imp
    x = {t^{2} + 4 over 2t}}$:







    begin{align}
    &color{#f00}{int{root{64x^{2} - 256} over x},dd x} =
    8int{root{x^{2} - 4} over x},dd x =
    8intpars{{8 over t^{2} + 4} - {16 over t^{2}} + 3},dd t
    \[3mm] = &
    32arctanpars{t over 2} + {128 over t} + 24t
    \[3mm] = &
    32arctanpars{x - root{x^{2} - 4} over 2} + {128 over x - root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
    \[3mm] = &
    32arctanpars{x - root{x^{2} - 4} over 2} +
    32pars{x + root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
    \[3mm] = &
    color{#f00}{32arctanpars{x - root{x^{2} - 4} over 2} +
    56x + 8root{x^{2} - 4}} + pars{~mbox{a constant}~}
    end{align}




    share|cite|improve this answer

























      up vote
      0
      down vote













      $newcommand{angles}[1]{leftlangle,{#1},rightrangle}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{half}{{1 over 2}}
      newcommand{ic}{mathrm{i}}
      newcommand{iff}{Longleftrightarrow}
      newcommand{imp}{Longrightarrow}
      newcommand{Li}[1]{,mathrm{Li}}
      newcommand{ol}[1]{overline{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{ul}[1]{underline{#1}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      With the
      sub$ds{ldots t equiv x - root{x^{2} - 4} imp
      x = {t^{2} + 4 over 2t}}$:







      begin{align}
      &color{#f00}{int{root{64x^{2} - 256} over x},dd x} =
      8int{root{x^{2} - 4} over x},dd x =
      8intpars{{8 over t^{2} + 4} - {16 over t^{2}} + 3},dd t
      \[3mm] = &
      32arctanpars{t over 2} + {128 over t} + 24t
      \[3mm] = &
      32arctanpars{x - root{x^{2} - 4} over 2} + {128 over x - root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
      \[3mm] = &
      32arctanpars{x - root{x^{2} - 4} over 2} +
      32pars{x + root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
      \[3mm] = &
      color{#f00}{32arctanpars{x - root{x^{2} - 4} over 2} +
      56x + 8root{x^{2} - 4}} + pars{~mbox{a constant}~}
      end{align}




      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        $newcommand{angles}[1]{leftlangle,{#1},rightrangle}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{half}{{1 over 2}}
        newcommand{ic}{mathrm{i}}
        newcommand{iff}{Longleftrightarrow}
        newcommand{imp}{Longrightarrow}
        newcommand{Li}[1]{,mathrm{Li}}
        newcommand{ol}[1]{overline{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{ul}[1]{underline{#1}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$




        With the
        sub$ds{ldots t equiv x - root{x^{2} - 4} imp
        x = {t^{2} + 4 over 2t}}$:







        begin{align}
        &color{#f00}{int{root{64x^{2} - 256} over x},dd x} =
        8int{root{x^{2} - 4} over x},dd x =
        8intpars{{8 over t^{2} + 4} - {16 over t^{2}} + 3},dd t
        \[3mm] = &
        32arctanpars{t over 2} + {128 over t} + 24t
        \[3mm] = &
        32arctanpars{x - root{x^{2} - 4} over 2} + {128 over x - root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
        \[3mm] = &
        32arctanpars{x - root{x^{2} - 4} over 2} +
        32pars{x + root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
        \[3mm] = &
        color{#f00}{32arctanpars{x - root{x^{2} - 4} over 2} +
        56x + 8root{x^{2} - 4}} + pars{~mbox{a constant}~}
        end{align}




        share|cite|improve this answer












        $newcommand{angles}[1]{leftlangle,{#1},rightrangle}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{half}{{1 over 2}}
        newcommand{ic}{mathrm{i}}
        newcommand{iff}{Longleftrightarrow}
        newcommand{imp}{Longrightarrow}
        newcommand{Li}[1]{,mathrm{Li}}
        newcommand{ol}[1]{overline{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{ul}[1]{underline{#1}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$




        With the
        sub$ds{ldots t equiv x - root{x^{2} - 4} imp
        x = {t^{2} + 4 over 2t}}$:







        begin{align}
        &color{#f00}{int{root{64x^{2} - 256} over x},dd x} =
        8int{root{x^{2} - 4} over x},dd x =
        8intpars{{8 over t^{2} + 4} - {16 over t^{2}} + 3},dd t
        \[3mm] = &
        32arctanpars{t over 2} + {128 over t} + 24t
        \[3mm] = &
        32arctanpars{x - root{x^{2} - 4} over 2} + {128 over x - root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
        \[3mm] = &
        32arctanpars{x - root{x^{2} - 4} over 2} +
        32pars{x + root{x^{2} - 4}} + 24pars{x - root{x^{2} - 4}}
        \[3mm] = &
        color{#f00}{32arctanpars{x - root{x^{2} - 4} over 2} +
        56x + 8root{x^{2} - 4}} + pars{~mbox{a constant}~}
        end{align}





        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jul 13 '16 at 5:41









        Felix Marin

        66k7107139




        66k7107139






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1857798%2fevaluate-int-frac-sqrt64x2-256x-dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna