Interpolation- Lagrange polynomial

Multi tool use
up vote
0
down vote
favorite
Let $x_0,x_1,...,x_n$ will be different real numbers.
Show, that: $f[x_0,x_1,...,x_n]=sum_{i=0}^mfrac{f(x_i)}{Phi '(x)}$ where $Phi (x)=(x-x_0)(x-x_1)...(x-x_m)$
So, I have some problems.How to start?
lagrange-interpolation interpolation-theory
add a comment |
up vote
0
down vote
favorite
Let $x_0,x_1,...,x_n$ will be different real numbers.
Show, that: $f[x_0,x_1,...,x_n]=sum_{i=0}^mfrac{f(x_i)}{Phi '(x)}$ where $Phi (x)=(x-x_0)(x-x_1)...(x-x_m)$
So, I have some problems.How to start?
lagrange-interpolation interpolation-theory
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $x_0,x_1,...,x_n$ will be different real numbers.
Show, that: $f[x_0,x_1,...,x_n]=sum_{i=0}^mfrac{f(x_i)}{Phi '(x)}$ where $Phi (x)=(x-x_0)(x-x_1)...(x-x_m)$
So, I have some problems.How to start?
lagrange-interpolation interpolation-theory
Let $x_0,x_1,...,x_n$ will be different real numbers.
Show, that: $f[x_0,x_1,...,x_n]=sum_{i=0}^mfrac{f(x_i)}{Phi '(x)}$ where $Phi (x)=(x-x_0)(x-x_1)...(x-x_m)$
So, I have some problems.How to start?
lagrange-interpolation interpolation-theory
lagrange-interpolation interpolation-theory
asked Dec 1 at 20:24
PabloZ392
1386
1386
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
I guess $f$ is defined as the minimum polynomial with $f(x_i)=y_i$. You get two polynomials of same order $n$, equal on $n+1$ points. They are equal.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I guess $f$ is defined as the minimum polynomial with $f(x_i)=y_i$. You get two polynomials of same order $n$, equal on $n+1$ points. They are equal.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
up vote
0
down vote
I guess $f$ is defined as the minimum polynomial with $f(x_i)=y_i$. You get two polynomials of same order $n$, equal on $n+1$ points. They are equal.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
up vote
0
down vote
up vote
0
down vote
I guess $f$ is defined as the minimum polynomial with $f(x_i)=y_i$. You get two polynomials of same order $n$, equal on $n+1$ points. They are equal.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
I guess $f$ is defined as the minimum polynomial with $f(x_i)=y_i$. You get two polynomials of same order $n$, equal on $n+1$ points. They are equal.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
answered Dec 1 at 21:43
Damien
2844
2844
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Damien is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021787%2finterpolation-lagrange-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
h5k,1BRVaZEUIgHcmgFsv5 gZxB2SysLPchX YCvmOGUWgtO5 CU SE0hatn KjNH,6s