Vectorization identity proof
up vote
0
down vote
favorite
I'm trying to prove the identity $vert vec(AXB)rangle = Aotimes B^T vert vec(X)rangle$, where $vert vec(L)rangle := sum_{ij} L_{ij}vert iranglevert jrangle$ for any $L:= sum_{ij}L_{ij}vert iranglelangle jvert$.
The left hand side can be written as
$
begin{align}
(AXB)_{in} &= sum_{jpqm}A_{ij}vert iranglelangle jvert X_{pq}vert pranglelangle qvert B_{mn}vert mranglelangle nvert \
&=sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglelangle n vert \
&overset{mathrm{vec}}{=} sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglevert n rangle
end{align}
$,
where I did the vectorization in the last line.
The right hand side is
$
begin{align}
(Aotimes B^T vert vec(X)rangle)_{in} &= sum_{jpqm} A_{ij} vert iranglelangle j vert otimes B_{nm}vert nranglelangle mvert X_{pq} vert prangleotimesvert qrangle \
&= sum_{jm} A_{ij}B_{nm}X_{jm} vert iranglevert n rangle
end{align}
$
These are not equal since $B_{mn} neq B_{nm}$. Can anyone explain what I did wrong?
vectorization
add a comment |
up vote
0
down vote
favorite
I'm trying to prove the identity $vert vec(AXB)rangle = Aotimes B^T vert vec(X)rangle$, where $vert vec(L)rangle := sum_{ij} L_{ij}vert iranglevert jrangle$ for any $L:= sum_{ij}L_{ij}vert iranglelangle jvert$.
The left hand side can be written as
$
begin{align}
(AXB)_{in} &= sum_{jpqm}A_{ij}vert iranglelangle jvert X_{pq}vert pranglelangle qvert B_{mn}vert mranglelangle nvert \
&=sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglelangle n vert \
&overset{mathrm{vec}}{=} sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglevert n rangle
end{align}
$,
where I did the vectorization in the last line.
The right hand side is
$
begin{align}
(Aotimes B^T vert vec(X)rangle)_{in} &= sum_{jpqm} A_{ij} vert iranglelangle j vert otimes B_{nm}vert nranglelangle mvert X_{pq} vert prangleotimesvert qrangle \
&= sum_{jm} A_{ij}B_{nm}X_{jm} vert iranglevert n rangle
end{align}
$
These are not equal since $B_{mn} neq B_{nm}$. Can anyone explain what I did wrong?
vectorization
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to prove the identity $vert vec(AXB)rangle = Aotimes B^T vert vec(X)rangle$, where $vert vec(L)rangle := sum_{ij} L_{ij}vert iranglevert jrangle$ for any $L:= sum_{ij}L_{ij}vert iranglelangle jvert$.
The left hand side can be written as
$
begin{align}
(AXB)_{in} &= sum_{jpqm}A_{ij}vert iranglelangle jvert X_{pq}vert pranglelangle qvert B_{mn}vert mranglelangle nvert \
&=sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglelangle n vert \
&overset{mathrm{vec}}{=} sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglevert n rangle
end{align}
$,
where I did the vectorization in the last line.
The right hand side is
$
begin{align}
(Aotimes B^T vert vec(X)rangle)_{in} &= sum_{jpqm} A_{ij} vert iranglelangle j vert otimes B_{nm}vert nranglelangle mvert X_{pq} vert prangleotimesvert qrangle \
&= sum_{jm} A_{ij}B_{nm}X_{jm} vert iranglevert n rangle
end{align}
$
These are not equal since $B_{mn} neq B_{nm}$. Can anyone explain what I did wrong?
vectorization
I'm trying to prove the identity $vert vec(AXB)rangle = Aotimes B^T vert vec(X)rangle$, where $vert vec(L)rangle := sum_{ij} L_{ij}vert iranglevert jrangle$ for any $L:= sum_{ij}L_{ij}vert iranglelangle jvert$.
The left hand side can be written as
$
begin{align}
(AXB)_{in} &= sum_{jpqm}A_{ij}vert iranglelangle jvert X_{pq}vert pranglelangle qvert B_{mn}vert mranglelangle nvert \
&=sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglelangle n vert \
&overset{mathrm{vec}}{=} sum_{jm}A_{ij}X_{jm}B_{mn}vert iranglevert n rangle
end{align}
$,
where I did the vectorization in the last line.
The right hand side is
$
begin{align}
(Aotimes B^T vert vec(X)rangle)_{in} &= sum_{jpqm} A_{ij} vert iranglelangle j vert otimes B_{nm}vert nranglelangle mvert X_{pq} vert prangleotimesvert qrangle \
&= sum_{jm} A_{ij}B_{nm}X_{jm} vert iranglevert n rangle
end{align}
$
These are not equal since $B_{mn} neq B_{nm}$. Can anyone explain what I did wrong?
vectorization
vectorization
asked Dec 1 at 20:48
user1936752
4951412
4951412
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17
add a comment |
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021813%2fvectorization-identity-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You didn't transpose $B$ in the right-hand side.
– Dog_69
Dec 1 at 21:12
Ah right, sorry - silly mistake! I've voted for it to be closed
– user1936752
Dec 1 at 21:17