Show $sqrt{x (1-y)} - sqrt{y (1-x)} + ysqrt{x} - xsqrt{y} - frac{x - y}{3} > 0$











up vote
1
down vote

favorite
2












Consider the inequality
$$
sqrt{x (1-y)} - sqrt{y (1-x)} + ysqrt{x} - xsqrt{y} - frac{x - y}{3} > 0
$$

where $0<y<x<1$ and $x+yleq 1$.



One can, for instance, consider optimizing the expression using the Karush-Kuhn-Tucker conditions. However, the computations involved are tedious and unwieldy.



Can the inequality be shown in a simpler way?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    2












    Consider the inequality
    $$
    sqrt{x (1-y)} - sqrt{y (1-x)} + ysqrt{x} - xsqrt{y} - frac{x - y}{3} > 0
    $$

    where $0<y<x<1$ and $x+yleq 1$.



    One can, for instance, consider optimizing the expression using the Karush-Kuhn-Tucker conditions. However, the computations involved are tedious and unwieldy.



    Can the inequality be shown in a simpler way?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      2









      up vote
      1
      down vote

      favorite
      2






      2





      Consider the inequality
      $$
      sqrt{x (1-y)} - sqrt{y (1-x)} + ysqrt{x} - xsqrt{y} - frac{x - y}{3} > 0
      $$

      where $0<y<x<1$ and $x+yleq 1$.



      One can, for instance, consider optimizing the expression using the Karush-Kuhn-Tucker conditions. However, the computations involved are tedious and unwieldy.



      Can the inequality be shown in a simpler way?










      share|cite|improve this question















      Consider the inequality
      $$
      sqrt{x (1-y)} - sqrt{y (1-x)} + ysqrt{x} - xsqrt{y} - frac{x - y}{3} > 0
      $$

      where $0<y<x<1$ and $x+yleq 1$.



      One can, for instance, consider optimizing the expression using the Karush-Kuhn-Tucker conditions. However, the computations involved are tedious and unwieldy.



      Can the inequality be shown in a simpler way?







      multivariable-calculus inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 6 at 17:52









      Glorfindel

      3,41981730




      3,41981730










      asked Dec 5 at 18:46









      broncoAbierto

      20119




      20119






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          If you let $x = sin^2 a, y = sin^2 b$ with $0<b<a<pi/2$, then your inequality is equivalent to:
          $$sin acos b - sin bcos a +sin^2bsin a - sin^2asin b >dfrac{sin^2 a-sin^2 b}{3}$$ or $$sin(a-b)>(sin a-sin b)left(frac 13+sin asin bright)$$
          or $$dfrac{cosleft(frac {a-b}2right)}{cosleft(frac{a+b}{2}right)}>frac{1}{3}+frac 12(cos(a-b)-cos(a+b)).$$
          Here, the remaining requirement is the same as $sin aleqcos b = sin(pi/2-b)$, which is the same as: $$a+bleqdfrac{pi}{2}.$$



          Now let $1>cosleft(frac{a-b}{2}right) = s>cosleft(frac{a+b}{2}right)=tgeqdfrac{1}{sqrt{2}}.$ Then, the equivalent inequality is:
          $$frac st>frac 13+frac 12(2s^2-1 - 2t^2+1) = frac 13+s^2-t^2$$
          But this one is trivial as:
          $$frac 13+s^2-t^2<frac 13+1-frac 12 = frac 56 <1<frac st.$$






          share|cite|improve this answer




























            up vote
            1
            down vote













            For a traditional kind of proof I use beside $,0<y<x<1,$ and $,x+yleq 1,$ also



            first derivation ($:=0$) and second derivation ($neq 0$) of a term to get minimum and maximum.



            Equivalent to the given inequation is $enspacedisplaystyle sqrt{x(1-y)}-sqrt{y(1-x)} > xsqrt{y}- ysqrt{x} + frac{x-y}{3}$



            and we devide by $,x-y,$ to get $enspacedisplaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} > frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} ,$ .



            Using first and second derivation we get



            $displaystyle sqrt{x(1-y)}+sqrt{y(1-x)} leq max(sqrt{x(1-y)}+sqrt{y(1-x)}) = 1 enspace$ and



            $displaystyle frac{1}{sqrt{y}}+frac{1}{sqrt{x}} geq frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}} geq min(frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}}) = 2sqrt{2}enspace$ so that follows



            $displaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} geq 1 > frac{1}{2sqrt{2}} + frac{1}{3} geq frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} enspace$ as wished.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027476%2fshow-sqrtx-1-y-sqrty-1-x-y-sqrtx-x-sqrty-fracx-y3%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              3
              down vote



              accepted










              If you let $x = sin^2 a, y = sin^2 b$ with $0<b<a<pi/2$, then your inequality is equivalent to:
              $$sin acos b - sin bcos a +sin^2bsin a - sin^2asin b >dfrac{sin^2 a-sin^2 b}{3}$$ or $$sin(a-b)>(sin a-sin b)left(frac 13+sin asin bright)$$
              or $$dfrac{cosleft(frac {a-b}2right)}{cosleft(frac{a+b}{2}right)}>frac{1}{3}+frac 12(cos(a-b)-cos(a+b)).$$
              Here, the remaining requirement is the same as $sin aleqcos b = sin(pi/2-b)$, which is the same as: $$a+bleqdfrac{pi}{2}.$$



              Now let $1>cosleft(frac{a-b}{2}right) = s>cosleft(frac{a+b}{2}right)=tgeqdfrac{1}{sqrt{2}}.$ Then, the equivalent inequality is:
              $$frac st>frac 13+frac 12(2s^2-1 - 2t^2+1) = frac 13+s^2-t^2$$
              But this one is trivial as:
              $$frac 13+s^2-t^2<frac 13+1-frac 12 = frac 56 <1<frac st.$$






              share|cite|improve this answer

























                up vote
                3
                down vote



                accepted










                If you let $x = sin^2 a, y = sin^2 b$ with $0<b<a<pi/2$, then your inequality is equivalent to:
                $$sin acos b - sin bcos a +sin^2bsin a - sin^2asin b >dfrac{sin^2 a-sin^2 b}{3}$$ or $$sin(a-b)>(sin a-sin b)left(frac 13+sin asin bright)$$
                or $$dfrac{cosleft(frac {a-b}2right)}{cosleft(frac{a+b}{2}right)}>frac{1}{3}+frac 12(cos(a-b)-cos(a+b)).$$
                Here, the remaining requirement is the same as $sin aleqcos b = sin(pi/2-b)$, which is the same as: $$a+bleqdfrac{pi}{2}.$$



                Now let $1>cosleft(frac{a-b}{2}right) = s>cosleft(frac{a+b}{2}right)=tgeqdfrac{1}{sqrt{2}}.$ Then, the equivalent inequality is:
                $$frac st>frac 13+frac 12(2s^2-1 - 2t^2+1) = frac 13+s^2-t^2$$
                But this one is trivial as:
                $$frac 13+s^2-t^2<frac 13+1-frac 12 = frac 56 <1<frac st.$$






                share|cite|improve this answer























                  up vote
                  3
                  down vote



                  accepted







                  up vote
                  3
                  down vote



                  accepted






                  If you let $x = sin^2 a, y = sin^2 b$ with $0<b<a<pi/2$, then your inequality is equivalent to:
                  $$sin acos b - sin bcos a +sin^2bsin a - sin^2asin b >dfrac{sin^2 a-sin^2 b}{3}$$ or $$sin(a-b)>(sin a-sin b)left(frac 13+sin asin bright)$$
                  or $$dfrac{cosleft(frac {a-b}2right)}{cosleft(frac{a+b}{2}right)}>frac{1}{3}+frac 12(cos(a-b)-cos(a+b)).$$
                  Here, the remaining requirement is the same as $sin aleqcos b = sin(pi/2-b)$, which is the same as: $$a+bleqdfrac{pi}{2}.$$



                  Now let $1>cosleft(frac{a-b}{2}right) = s>cosleft(frac{a+b}{2}right)=tgeqdfrac{1}{sqrt{2}}.$ Then, the equivalent inequality is:
                  $$frac st>frac 13+frac 12(2s^2-1 - 2t^2+1) = frac 13+s^2-t^2$$
                  But this one is trivial as:
                  $$frac 13+s^2-t^2<frac 13+1-frac 12 = frac 56 <1<frac st.$$






                  share|cite|improve this answer












                  If you let $x = sin^2 a, y = sin^2 b$ with $0<b<a<pi/2$, then your inequality is equivalent to:
                  $$sin acos b - sin bcos a +sin^2bsin a - sin^2asin b >dfrac{sin^2 a-sin^2 b}{3}$$ or $$sin(a-b)>(sin a-sin b)left(frac 13+sin asin bright)$$
                  or $$dfrac{cosleft(frac {a-b}2right)}{cosleft(frac{a+b}{2}right)}>frac{1}{3}+frac 12(cos(a-b)-cos(a+b)).$$
                  Here, the remaining requirement is the same as $sin aleqcos b = sin(pi/2-b)$, which is the same as: $$a+bleqdfrac{pi}{2}.$$



                  Now let $1>cosleft(frac{a-b}{2}right) = s>cosleft(frac{a+b}{2}right)=tgeqdfrac{1}{sqrt{2}}.$ Then, the equivalent inequality is:
                  $$frac st>frac 13+frac 12(2s^2-1 - 2t^2+1) = frac 13+s^2-t^2$$
                  But this one is trivial as:
                  $$frac 13+s^2-t^2<frac 13+1-frac 12 = frac 56 <1<frac st.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 6 at 0:37









                  dezdichado

                  6,0991929




                  6,0991929






















                      up vote
                      1
                      down vote













                      For a traditional kind of proof I use beside $,0<y<x<1,$ and $,x+yleq 1,$ also



                      first derivation ($:=0$) and second derivation ($neq 0$) of a term to get minimum and maximum.



                      Equivalent to the given inequation is $enspacedisplaystyle sqrt{x(1-y)}-sqrt{y(1-x)} > xsqrt{y}- ysqrt{x} + frac{x-y}{3}$



                      and we devide by $,x-y,$ to get $enspacedisplaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} > frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} ,$ .



                      Using first and second derivation we get



                      $displaystyle sqrt{x(1-y)}+sqrt{y(1-x)} leq max(sqrt{x(1-y)}+sqrt{y(1-x)}) = 1 enspace$ and



                      $displaystyle frac{1}{sqrt{y}}+frac{1}{sqrt{x}} geq frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}} geq min(frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}}) = 2sqrt{2}enspace$ so that follows



                      $displaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} geq 1 > frac{1}{2sqrt{2}} + frac{1}{3} geq frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} enspace$ as wished.






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        For a traditional kind of proof I use beside $,0<y<x<1,$ and $,x+yleq 1,$ also



                        first derivation ($:=0$) and second derivation ($neq 0$) of a term to get minimum and maximum.



                        Equivalent to the given inequation is $enspacedisplaystyle sqrt{x(1-y)}-sqrt{y(1-x)} > xsqrt{y}- ysqrt{x} + frac{x-y}{3}$



                        and we devide by $,x-y,$ to get $enspacedisplaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} > frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} ,$ .



                        Using first and second derivation we get



                        $displaystyle sqrt{x(1-y)}+sqrt{y(1-x)} leq max(sqrt{x(1-y)}+sqrt{y(1-x)}) = 1 enspace$ and



                        $displaystyle frac{1}{sqrt{y}}+frac{1}{sqrt{x}} geq frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}} geq min(frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}}) = 2sqrt{2}enspace$ so that follows



                        $displaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} geq 1 > frac{1}{2sqrt{2}} + frac{1}{3} geq frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} enspace$ as wished.






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          For a traditional kind of proof I use beside $,0<y<x<1,$ and $,x+yleq 1,$ also



                          first derivation ($:=0$) and second derivation ($neq 0$) of a term to get minimum and maximum.



                          Equivalent to the given inequation is $enspacedisplaystyle sqrt{x(1-y)}-sqrt{y(1-x)} > xsqrt{y}- ysqrt{x} + frac{x-y}{3}$



                          and we devide by $,x-y,$ to get $enspacedisplaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} > frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} ,$ .



                          Using first and second derivation we get



                          $displaystyle sqrt{x(1-y)}+sqrt{y(1-x)} leq max(sqrt{x(1-y)}+sqrt{y(1-x)}) = 1 enspace$ and



                          $displaystyle frac{1}{sqrt{y}}+frac{1}{sqrt{x}} geq frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}} geq min(frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}}) = 2sqrt{2}enspace$ so that follows



                          $displaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} geq 1 > frac{1}{2sqrt{2}} + frac{1}{3} geq frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} enspace$ as wished.






                          share|cite|improve this answer












                          For a traditional kind of proof I use beside $,0<y<x<1,$ and $,x+yleq 1,$ also



                          first derivation ($:=0$) and second derivation ($neq 0$) of a term to get minimum and maximum.



                          Equivalent to the given inequation is $enspacedisplaystyle sqrt{x(1-y)}-sqrt{y(1-x)} > xsqrt{y}- ysqrt{x} + frac{x-y}{3}$



                          and we devide by $,x-y,$ to get $enspacedisplaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} > frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} ,$ .



                          Using first and second derivation we get



                          $displaystyle sqrt{x(1-y)}+sqrt{y(1-x)} leq max(sqrt{x(1-y)}+sqrt{y(1-x)}) = 1 enspace$ and



                          $displaystyle frac{1}{sqrt{y}}+frac{1}{sqrt{x}} geq frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}} geq min(frac{1}{sqrt{1-x}}+frac{1}{sqrt{x}}) = 2sqrt{2}enspace$ so that follows



                          $displaystyle frac{1}{sqrt{x(1-y)}+sqrt{y(1-x)}} geq 1 > frac{1}{2sqrt{2}} + frac{1}{3} geq frac{1}{frac{1}{sqrt{y}}+frac{1}{sqrt{x}}} + frac{1}{3} enspace$ as wished.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 13 at 11:30









                          user90369

                          8,193925




                          8,193925






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027476%2fshow-sqrtx-1-y-sqrty-1-x-y-sqrtx-x-sqrty-fracx-y3%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna