An integral leads to complementary error functions
$begingroup$
I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$
The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}
where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.
I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$
I cannot see why this is the first equation too. Any helps? Thanks in advance.
integration complex-analysis special-functions error-function
$endgroup$
add a comment |
$begingroup$
I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$
The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}
where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.
I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$
I cannot see why this is the first equation too. Any helps? Thanks in advance.
integration complex-analysis special-functions error-function
$endgroup$
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
1
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41
add a comment |
$begingroup$
I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$
The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}
where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.
I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$
I cannot see why this is the first equation too. Any helps? Thanks in advance.
integration complex-analysis special-functions error-function
$endgroup$
I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$
The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}
where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.
I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$
I cannot see why this is the first equation too. Any helps? Thanks in advance.
integration complex-analysis special-functions error-function
integration complex-analysis special-functions error-function
edited Dec 20 '18 at 0:46
gouwangzhangdong
asked Dec 20 '18 at 0:40
gouwangzhangdonggouwangzhangdong
788
788
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
1
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41
add a comment |
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
1
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
1
1
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047021%2fan-integral-leads-to-complementary-error-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047021%2fan-integral-leads-to-complementary-error-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23
1
$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45
$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46
$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41