An integral leads to complementary error functions












1












$begingroup$


I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$

The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$

I cannot see why this is the first equation too. Any helps? Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
    $endgroup$
    – Szeto
    Dec 20 '18 at 12:23






  • 1




    $begingroup$
    There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
    $endgroup$
    – Maxim
    Dec 20 '18 at 14:45










  • $begingroup$
    Yes,I just realise this typo. Many thanks for this.
    $endgroup$
    – gouwangzhangdong
    Dec 21 '18 at 2:46










  • $begingroup$
    This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
    $endgroup$
    – Andy Walls
    Dec 31 '18 at 3:41
















1












$begingroup$


I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$

The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$

I cannot see why this is the first equation too. Any helps? Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
    $endgroup$
    – Szeto
    Dec 20 '18 at 12:23






  • 1




    $begingroup$
    There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
    $endgroup$
    – Maxim
    Dec 20 '18 at 14:45










  • $begingroup$
    Yes,I just realise this typo. Many thanks for this.
    $endgroup$
    – gouwangzhangdong
    Dec 21 '18 at 2:46










  • $begingroup$
    This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
    $endgroup$
    – Andy Walls
    Dec 31 '18 at 3:41














1












1








1





$begingroup$


I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$

The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$

I cannot see why this is the first equation too. Any helps? Thanks in advance.










share|cite|improve this question











$endgroup$




I am reading a paper Albrecher, Constantinescu and Loisel "2011Explicit ruin formulas for models with dependence among risks" and getting stuck at one integral (Example 2.4):
$$int _{frac{lambda }{c}}^{infty }frac{lambda }{theta c}e^{-u theta } e^{frac{lambda c}{ u}} frac{alpha }{2sqrt{pi
theta ^3}}e^{-frac{alpha ^2}{4theta }}dtheta.$$

The $theta^{-frac{5}{2}}$ in the integrand kills my attempts. Three authors claim that it should be:
begin{equation}
frac{lambda }{alpha ^2 c}e^{-frac{alpha ^2c}{4lambda }}left{-frac{2 alpha }{sqrt{pi frac{lambda }{c}}}+e^{frac{left(alpha
c-2 lambda sqrt{u}right)^2}{4c lambda }}left(1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda }{c}}-frac{alpha }{2sqrt{frac{lambda
}{c}}}right]+e^{frac{left(alpha c+2 lambda sqrt{u}right)^2}{4c lambda }}left(-1+alpha sqrt{u}right)text{erfc}left[sqrt{frac{u lambda
}{c}}+frac{alpha }{2sqrt{frac{lambda }{c}}}right]right},
end{equation}

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



I cannot see how to do this. I start from the above and end with the following:
$$frac{lambda }{alpha c}left{-frac{2 }{sqrt{pi frac{lambda }{c}}}e^{-frac{alpha ^2c}{4lambda }}+frac{ e^{frac{u lambda }{ c }}}{sqrt{pi
}}int _{frac{lambda }{c}}^{infty }e^{-u theta -frac{alpha ^2}{4theta }}text{ }left(frac{1}{theta sqrt{theta }}+frac{2u}{sqrt{theta
}}right)dtheta right}.$$

I cannot see why this is the first equation too. Any helps? Thanks in advance.







integration complex-analysis special-functions error-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 0:46







gouwangzhangdong

















asked Dec 20 '18 at 0:40









gouwangzhangdonggouwangzhangdong

788




788












  • $begingroup$
    Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
    $endgroup$
    – Szeto
    Dec 20 '18 at 12:23






  • 1




    $begingroup$
    There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
    $endgroup$
    – Maxim
    Dec 20 '18 at 14:45










  • $begingroup$
    Yes,I just realise this typo. Many thanks for this.
    $endgroup$
    – gouwangzhangdong
    Dec 21 '18 at 2:46










  • $begingroup$
    This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
    $endgroup$
    – Andy Walls
    Dec 31 '18 at 3:41


















  • $begingroup$
    Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
    $endgroup$
    – Szeto
    Dec 20 '18 at 12:23






  • 1




    $begingroup$
    There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
    $endgroup$
    – Maxim
    Dec 20 '18 at 14:45










  • $begingroup$
    Yes,I just realise this typo. Many thanks for this.
    $endgroup$
    – gouwangzhangdong
    Dec 21 '18 at 2:46










  • $begingroup$
    This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
    $endgroup$
    – Andy Walls
    Dec 31 '18 at 3:41
















$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23




$begingroup$
Maybe you would want to simplify your problem a bit because not many MSE users will be interested after seeing the messy and huge expressions.
$endgroup$
– Szeto
Dec 20 '18 at 12:23




1




1




$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45




$begingroup$
There is a typo, the formula with $operatorname{erfc}$ is the correct value for $$int_{lambda/c}^infty frac lambda {theta c} e^{-u theta} e^{lambda u/c} frac alpha {2 sqrt{pi theta^3}} e^{-alpha^2/(4 theta)} dtheta$$ ($e^{lambda u/c}$ instead of $e^{lambda c/u}$). For a given $k$, a closed form for $int theta^{k + 1/2} e^{-a theta - b/theta} dtheta$ exists because $$int e^{-(a x + b/x)^2} dx = frac {sqrt pi} {4 a} left( e^{-4 a b} operatorname{erfc} left( frac b x - a x right) - operatorname{erfc} left( frac b x + a x right) right).$$
$endgroup$
– Maxim
Dec 20 '18 at 14:45












$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46




$begingroup$
Yes,I just realise this typo. Many thanks for this.
$endgroup$
– gouwangzhangdong
Dec 21 '18 at 2:46












$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41




$begingroup$
This solution looks very similar, but I'm not sure if it helps: math.stackexchange.com/a/3051321/441161
$endgroup$
– Andy Walls
Dec 31 '18 at 3:41










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047021%2fan-integral-leads-to-complementary-error-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047021%2fan-integral-leads-to-complementary-error-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna