Markov semigroup for normal distributed kernels












3












$begingroup$


Let $alpha,sigma^2>0$. I want to show that the kernels defined by



$$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$



$$K_0(x,cdot)=varepsilon_x$$



form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds



$$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$



Clearly we have



$$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$



and also



$$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$



For both $s,t>0$ my attempt is following:



begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
&quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
end{align}



but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Let $alpha,sigma^2>0$. I want to show that the kernels defined by



    $$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$



    $$K_0(x,cdot)=varepsilon_x$$



    form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds



    $$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$



    Clearly we have



    $$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$



    and also



    $$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$



    For both $s,t>0$ my attempt is following:



    begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
    &quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
    end{align}



    but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      0



      $begingroup$


      Let $alpha,sigma^2>0$. I want to show that the kernels defined by



      $$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$



      $$K_0(x,cdot)=varepsilon_x$$



      form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds



      $$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$



      Clearly we have



      $$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$



      and also



      $$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$



      For both $s,t>0$ my attempt is following:



      begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
      &quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
      end{align}



      but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!










      share|cite|improve this question









      $endgroup$




      Let $alpha,sigma^2>0$. I want to show that the kernels defined by



      $$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$



      $$K_0(x,cdot)=varepsilon_x$$



      form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds



      $$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$



      Clearly we have



      $$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$



      and also



      $$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$



      For both $s,t>0$ my attempt is following:



      begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
      &quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
      end{align}



      but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!







      probability-theory stochastic-processes stochastic-calculus stochastic-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 20 '18 at 2:42









      user408858user408858

      482213




      482213






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.





          We want to show (by direct integration)
          $$
          int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
          $$

          Note that
          begin{align}
          int_{mathbb R}K_t(y,B)K_s(x,dy)
          & =
          int_{mathbb R}int_B
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
          e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
          dz
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
          e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
          dy\
          & =
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
          int_B
          int_{mathbb R}
          e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
          - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
          }
          dy dz
          end{align}

          where in the second equality I changed the order of integration. And
          from this point on, it's mechanical. First off, the exponent can be rewritten as
          $$
          - frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
          - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
          =
          - frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
          left(
          y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
          right)^2
          - frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
          $$

          So
          begin{align}
          int_{mathbb R}K_t(y,B)K_s(x,dy)
          & =
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
          int_B
          frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
          %%
          int_{mathbb R}
          e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
          - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
          }
          dy dz\
          & =
          frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
          int_B
          e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
          dz\
          & = K_{s+t}(x,B).
          end{align}






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            The notation makes everything look much more grim than it actually is, so lets quickly define
            $$
            m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
            $$

            Then if you form the double integral, switch the order of integration and then inspect the inner integral
            $$
            int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
            $$

            you see this is exactly the same as what we would have in the linear Gaussian model
            $$
            y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
            $$

            and in particular for the linear Gaussian model you have the marginal distribution
            $$
            p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
            $$

            Applying that in this case you have
            $$
            begin{align}
            p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
            end{align}
            $$

            then you have
            $$
            e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
            $$

            and
            $$
            begin{align}
            v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
            &=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
            &= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
            end{align}
            $$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047094%2fmarkov-semigroup-for-normal-distributed-kernels%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.





              We want to show (by direct integration)
              $$
              int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
              $$

              Note that
              begin{align}
              int_{mathbb R}K_t(y,B)K_s(x,dy)
              & =
              int_{mathbb R}int_B
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
              e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
              dz
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
              e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
              dy\
              & =
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
              int_B
              int_{mathbb R}
              e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
              - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
              }
              dy dz
              end{align}

              where in the second equality I changed the order of integration. And
              from this point on, it's mechanical. First off, the exponent can be rewritten as
              $$
              - frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
              - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
              =
              - frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
              left(
              y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
              right)^2
              - frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
              $$

              So
              begin{align}
              int_{mathbb R}K_t(y,B)K_s(x,dy)
              & =
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
              int_B
              frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
              %%
              int_{mathbb R}
              e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
              - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
              }
              dy dz\
              & =
              frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
              int_B
              e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
              dz\
              & = K_{s+t}(x,B).
              end{align}






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.





                We want to show (by direct integration)
                $$
                int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
                $$

                Note that
                begin{align}
                int_{mathbb R}K_t(y,B)K_s(x,dy)
                & =
                int_{mathbb R}int_B
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                dz
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                dy\
                & =
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                int_B
                int_{mathbb R}
                e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                }
                dy dz
                end{align}

                where in the second equality I changed the order of integration. And
                from this point on, it's mechanical. First off, the exponent can be rewritten as
                $$
                - frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                =
                - frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
                left(
                y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
                right)^2
                - frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
                $$

                So
                begin{align}
                int_{mathbb R}K_t(y,B)K_s(x,dy)
                & =
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                int_B
                frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
                %%
                int_{mathbb R}
                e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                }
                dy dz\
                & =
                frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                int_B
                e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                dz\
                & = K_{s+t}(x,B).
                end{align}






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.





                  We want to show (by direct integration)
                  $$
                  int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
                  $$

                  Note that
                  begin{align}
                  int_{mathbb R}K_t(y,B)K_s(x,dy)
                  & =
                  int_{mathbb R}int_B
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  dz
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  dy\
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  int_B
                  int_{mathbb R}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  }
                  dy dz
                  end{align}

                  where in the second equality I changed the order of integration. And
                  from this point on, it's mechanical. First off, the exponent can be rewritten as
                  $$
                  - frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  =
                  - frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
                  left(
                  y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
                  right)^2
                  - frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
                  $$

                  So
                  begin{align}
                  int_{mathbb R}K_t(y,B)K_s(x,dy)
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  int_B
                  frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
                  %%
                  int_{mathbb R}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  }
                  dy dz\
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  int_B
                  e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  dz\
                  & = K_{s+t}(x,B).
                  end{align}






                  share|cite|improve this answer











                  $endgroup$



                  Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.





                  We want to show (by direct integration)
                  $$
                  int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
                  $$

                  Note that
                  begin{align}
                  int_{mathbb R}K_t(y,B)K_s(x,dy)
                  & =
                  int_{mathbb R}int_B
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  dz
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  dy\
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
                  int_B
                  int_{mathbb R}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  }
                  dy dz
                  end{align}

                  where in the second equality I changed the order of integration. And
                  from this point on, it's mechanical. First off, the exponent can be rewritten as
                  $$
                  - frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  =
                  - frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
                  left(
                  y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
                  right)^2
                  - frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
                  $$

                  So
                  begin{align}
                  int_{mathbb R}K_t(y,B)K_s(x,dy)
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  int_B
                  frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
                  %%
                  int_{mathbb R}
                  e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
                  - frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
                  }
                  dy dz\
                  & =
                  frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  int_B
                  e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
                  dz\
                  & = K_{s+t}(x,B).
                  end{align}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 22 '18 at 14:10

























                  answered Dec 22 '18 at 11:55









                  AddSupAddSup

                  403315




                  403315























                      1












                      $begingroup$

                      The notation makes everything look much more grim than it actually is, so lets quickly define
                      $$
                      m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
                      $$

                      Then if you form the double integral, switch the order of integration and then inspect the inner integral
                      $$
                      int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
                      $$

                      you see this is exactly the same as what we would have in the linear Gaussian model
                      $$
                      y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
                      $$

                      and in particular for the linear Gaussian model you have the marginal distribution
                      $$
                      p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
                      $$

                      Applying that in this case you have
                      $$
                      begin{align}
                      p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
                      end{align}
                      $$

                      then you have
                      $$
                      e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
                      $$

                      and
                      $$
                      begin{align}
                      v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
                      &=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
                      &= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
                      end{align}
                      $$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        The notation makes everything look much more grim than it actually is, so lets quickly define
                        $$
                        m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
                        $$

                        Then if you form the double integral, switch the order of integration and then inspect the inner integral
                        $$
                        int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
                        $$

                        you see this is exactly the same as what we would have in the linear Gaussian model
                        $$
                        y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
                        $$

                        and in particular for the linear Gaussian model you have the marginal distribution
                        $$
                        p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
                        $$

                        Applying that in this case you have
                        $$
                        begin{align}
                        p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
                        end{align}
                        $$

                        then you have
                        $$
                        e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
                        $$

                        and
                        $$
                        begin{align}
                        v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
                        &=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
                        &= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
                        end{align}
                        $$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          The notation makes everything look much more grim than it actually is, so lets quickly define
                          $$
                          m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
                          $$

                          Then if you form the double integral, switch the order of integration and then inspect the inner integral
                          $$
                          int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
                          $$

                          you see this is exactly the same as what we would have in the linear Gaussian model
                          $$
                          y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
                          $$

                          and in particular for the linear Gaussian model you have the marginal distribution
                          $$
                          p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
                          $$

                          Applying that in this case you have
                          $$
                          begin{align}
                          p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
                          end{align}
                          $$

                          then you have
                          $$
                          e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
                          $$

                          and
                          $$
                          begin{align}
                          v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
                          &=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
                          &= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
                          end{align}
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          The notation makes everything look much more grim than it actually is, so lets quickly define
                          $$
                          m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
                          $$

                          Then if you form the double integral, switch the order of integration and then inspect the inner integral
                          $$
                          int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
                          $$

                          you see this is exactly the same as what we would have in the linear Gaussian model
                          $$
                          y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
                          $$

                          and in particular for the linear Gaussian model you have the marginal distribution
                          $$
                          p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
                          $$

                          Applying that in this case you have
                          $$
                          begin{align}
                          p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
                          end{align}
                          $$

                          then you have
                          $$
                          e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
                          $$

                          and
                          $$
                          begin{align}
                          v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
                          &=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
                          &= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
                          end{align}
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 22 '18 at 13:09









                          NadielsNadiels

                          2,385413




                          2,385413






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047094%2fmarkov-semigroup-for-normal-distributed-kernels%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna