Markov semigroup for normal distributed kernels
$begingroup$
Let $alpha,sigma^2>0$. I want to show that the kernels defined by
$$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$
$$K_0(x,cdot)=varepsilon_x$$
form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds
$$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$
Clearly we have
$$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$
and also
$$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$
For both $s,t>0$ my attempt is following:
begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
&quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
end{align}
but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!
probability-theory stochastic-processes stochastic-calculus stochastic-integrals
$endgroup$
add a comment |
$begingroup$
Let $alpha,sigma^2>0$. I want to show that the kernels defined by
$$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$
$$K_0(x,cdot)=varepsilon_x$$
form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds
$$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$
Clearly we have
$$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$
and also
$$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$
For both $s,t>0$ my attempt is following:
begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
&quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
end{align}
but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!
probability-theory stochastic-processes stochastic-calculus stochastic-integrals
$endgroup$
add a comment |
$begingroup$
Let $alpha,sigma^2>0$. I want to show that the kernels defined by
$$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$
$$K_0(x,cdot)=varepsilon_x$$
form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds
$$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$
Clearly we have
$$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$
and also
$$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$
For both $s,t>0$ my attempt is following:
begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
&quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
end{align}
but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!
probability-theory stochastic-processes stochastic-calculus stochastic-integrals
$endgroup$
Let $alpha,sigma^2>0$. I want to show that the kernels defined by
$$K_t(x,cdot):=mathcal{N}big(xe^{-alpha t},frac{sigma^2}{2alpha}(1-e^{-2alpha t})big)quadtext{for}quad t>0$$
$$K_0(x,cdot)=varepsilon_x$$
form a Markov semigroup, i.e. for all $(x,B)inmathbb{R}timesmathcal{B}(mathbb{R})$ and for all $s,tin mathbb{R}_+$ it holds
$$K_{s+t}(x,B)=int_mathbb{R}K_t(y,B)K_s(x,dy)$$
Clearly we have
$$K_{0+t}(x,B)=int_mathbb{R}K_t(y,B) varepsilon_{x}(dy)=K_t(x,B)$$
and also
$$K_{s+0}(x,B)=int_mathbb{R}varepsilon_y(B)K_s(x,dy)=K_s(x,B)$$
For both $s,t>0$ my attempt is following:
begin{align}int_mathbb{R}K_t(y,B)K_s(x,dy)&=frac{1}{frac{pisigma^2}{alpha}sqrt{1-e^{-2at}-e^{-2as}+e^{-2a(t+s)}}}\
&quadcdotint_mathbb{R}bigg(int_{B-ye^{-alpha t}}expbigg(frac{z^2}{frac{sigma^2}{alpha}(1-e^{-alpha t})}bigg)dzbigg)expbigg(frac{(y-xe^{-alpha s})^2}{frac{sigma^2}{alpha}(1-e^{-alpha s})}bigg)dy
end{align}
but I do not know where I have to go from here... I am grateful for any advice or help. Thanks in advance!
probability-theory stochastic-processes stochastic-calculus stochastic-integrals
probability-theory stochastic-processes stochastic-calculus stochastic-integrals
asked Dec 20 '18 at 2:42
user408858user408858
482213
482213
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.
We want to show (by direct integration)
$$
int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
$$
Note that
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
int_{mathbb R}int_B
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
dz
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
dy\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
int_B
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz
end{align}
where in the second equality I changed the order of integration. And
from this point on, it's mechanical. First off, the exponent can be rewritten as
$$
- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
=
- frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
left(
y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
right)^2
- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
$$
So
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
%%
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
dz\
& = K_{s+t}(x,B).
end{align}
$endgroup$
add a comment |
$begingroup$
The notation makes everything look much more grim than it actually is, so lets quickly define
$$
m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
$$
Then if you form the double integral, switch the order of integration and then inspect the inner integral
$$
int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
$$
you see this is exactly the same as what we would have in the linear Gaussian model
$$
y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
$$
and in particular for the linear Gaussian model you have the marginal distribution
$$
p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
$$
Applying that in this case you have
$$
begin{align}
p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
end{align}
$$
then you have
$$
e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
$$
and
$$
begin{align}
v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
&=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
&= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047094%2fmarkov-semigroup-for-normal-distributed-kernels%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.
We want to show (by direct integration)
$$
int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
$$
Note that
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
int_{mathbb R}int_B
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
dz
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
dy\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
int_B
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz
end{align}
where in the second equality I changed the order of integration. And
from this point on, it's mechanical. First off, the exponent can be rewritten as
$$
- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
=
- frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
left(
y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
right)^2
- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
$$
So
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
%%
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
dz\
& = K_{s+t}(x,B).
end{align}
$endgroup$
add a comment |
$begingroup$
Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.
We want to show (by direct integration)
$$
int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
$$
Note that
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
int_{mathbb R}int_B
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
dz
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
dy\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
int_B
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz
end{align}
where in the second equality I changed the order of integration. And
from this point on, it's mechanical. First off, the exponent can be rewritten as
$$
- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
=
- frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
left(
y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
right)^2
- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
$$
So
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
%%
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
dz\
& = K_{s+t}(x,B).
end{align}
$endgroup$
add a comment |
$begingroup$
Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.
We want to show (by direct integration)
$$
int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
$$
Note that
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
int_{mathbb R}int_B
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
dz
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
dy\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
int_B
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz
end{align}
where in the second equality I changed the order of integration. And
from this point on, it's mechanical. First off, the exponent can be rewritten as
$$
- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
=
- frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
left(
y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
right)^2
- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
$$
So
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
%%
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
dz\
& = K_{s+t}(x,B).
end{align}
$endgroup$
Addendum. If we just want to see it's true, then of course it's true because it's the transition pdf of an OU process. I thought the purpose of the exercise was to "double check" it by direct integration.
We want to show (by direct integration)
$$
int_{mathbb R}K_t(y,B)K_s(x,dy)=K_{s+t}(x,B).
$$
Note that
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
int_{mathbb R}int_B
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
dz
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
e^{- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
dy\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})}}
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha s})}}
int_B
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz
end{align}
where in the second equality I changed the order of integration. And
from this point on, it's mechanical. First off, the exponent can be rewritten as
$$
- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
=
- frac{1-e^{-2alpha(s+t)}}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}
left(
y-frac{ze^{-alpha}(1-e^{-2alpha s}) + xe^{-alpha s}(1-e^{-2alpha t})}{1-e^{-2alpha(s+t)}}
right)^2
- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}.
$$
So
begin{align}
int_{mathbb R}K_t(y,B)K_s(x,dy)
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
frac{sqrt{1-e^{-2alpha (s+t)}}}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha t})(1-e^{-2alpha s})}}
%%
int_{mathbb R}
e^{- frac{(z-ye^{-alpha t})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha t})}
- frac{(y-xe^{-alpha s})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha s})}
}
dy dz\
& =
frac{1}{sqrt{2pifrac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
int_B
e^{- frac{(z-xe^{-alpha(s+t)})^2}{2frac{sigma^2}{2alpha}(1-e^{-2alpha (s+t)})}}
dz\
& = K_{s+t}(x,B).
end{align}
edited Dec 22 '18 at 14:10
answered Dec 22 '18 at 11:55
AddSupAddSup
403315
403315
add a comment |
add a comment |
$begingroup$
The notation makes everything look much more grim than it actually is, so lets quickly define
$$
m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
$$
Then if you form the double integral, switch the order of integration and then inspect the inner integral
$$
int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
$$
you see this is exactly the same as what we would have in the linear Gaussian model
$$
y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
$$
and in particular for the linear Gaussian model you have the marginal distribution
$$
p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
$$
Applying that in this case you have
$$
begin{align}
p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
end{align}
$$
then you have
$$
e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
$$
and
$$
begin{align}
v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
&=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
&= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The notation makes everything look much more grim than it actually is, so lets quickly define
$$
m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
$$
Then if you form the double integral, switch the order of integration and then inspect the inner integral
$$
int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
$$
you see this is exactly the same as what we would have in the linear Gaussian model
$$
y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
$$
and in particular for the linear Gaussian model you have the marginal distribution
$$
p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
$$
Applying that in this case you have
$$
begin{align}
p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
end{align}
$$
then you have
$$
e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
$$
and
$$
begin{align}
v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
&=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
&= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The notation makes everything look much more grim than it actually is, so lets quickly define
$$
m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
$$
Then if you form the double integral, switch the order of integration and then inspect the inner integral
$$
int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
$$
you see this is exactly the same as what we would have in the linear Gaussian model
$$
y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
$$
and in particular for the linear Gaussian model you have the marginal distribution
$$
p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
$$
Applying that in this case you have
$$
begin{align}
p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
end{align}
$$
then you have
$$
e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
$$
and
$$
begin{align}
v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
&=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
&= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
end{align}
$$
$endgroup$
The notation makes everything look much more grim than it actually is, so lets quickly define
$$
m(t, x) = e^{-at}x, qquad v(t) = frac{sigma^2}{2a}left(1-e^{-2at}right).
$$
Then if you form the double integral, switch the order of integration and then inspect the inner integral
$$
int_{mathbb{R}}mathcal{N}(z mid m(t, y), v(t))mathcal{N}(y mid m(s, x) , v(s) )mathrm{d}y,
$$
you see this is exactly the same as what we would have in the linear Gaussian model
$$
y sim mathcal{N}(y mid mu_0, sigma^2_0), qquad zmid y sim mathcal{N}(z mid Ay + b, sigma_1^2),
$$
and in particular for the linear Gaussian model you have the marginal distribution
$$
p(z) = mathcal{N}(z mid Amu_0 + b, sigma_1 + A^2sigma_0).
$$
Applying that in this case you have
$$
begin{align}
p(z) &= mathcal{N}(z mid e^{-at}m(s, x), v(t) + e^{-2at}v(s)) \
end{align}
$$
then you have
$$
e^{-at}m(s, x) = e^{-at}e^{-as}x =e^{-a(t+s)}x
$$
and
$$
begin{align}
v(t) + e^{-2at}v(s) &=frac{sigma^2}{2a}left( 1-e^{-2at}right) + e^{-2at}frac{sigma^2}{2a}(1-e^{-2as}) \
&=frac{sigma^2}{2a}left(1 - e^{-2at} + e^{-2at}-e^{-2a(t+s)} right) \
&= frac{sigma^2}{2a}left(1-e^{-2(a+s)}right).
end{align}
$$
answered Dec 22 '18 at 13:09
NadielsNadiels
2,385413
2,385413
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047094%2fmarkov-semigroup-for-normal-distributed-kernels%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown