How can I convert $(a + bi)^{c+di}$ to polar form?












1












$begingroup$


Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
    $endgroup$
    – ablmf
    Dec 20 '18 at 0:49






  • 1




    $begingroup$
    The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
    $endgroup$
    – Mark Viola
    Dec 20 '18 at 0:52












  • $begingroup$
    I am not sure what that means.
    $endgroup$
    – Sam
    Dec 20 '18 at 0:55










  • $begingroup$
    Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
    $endgroup$
    – zwim
    Dec 20 '18 at 0:58
















1












$begingroup$


Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.



Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
    $endgroup$
    – ablmf
    Dec 20 '18 at 0:49






  • 1




    $begingroup$
    The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
    $endgroup$
    – Mark Viola
    Dec 20 '18 at 0:52












  • $begingroup$
    I am not sure what that means.
    $endgroup$
    – Sam
    Dec 20 '18 at 0:55










  • $begingroup$
    Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
    $endgroup$
    – zwim
    Dec 20 '18 at 0:58














1












1








1





$begingroup$


Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.



Thanks.










share|cite|improve this question











$endgroup$




Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.



Thanks.







complex-numbers exponentiation polar-coordinates






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 20 '18 at 7:09









Eric Wofsey

184k13211338




184k13211338










asked Dec 20 '18 at 0:44









SamSam

111




111












  • $begingroup$
    wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
    $endgroup$
    – ablmf
    Dec 20 '18 at 0:49






  • 1




    $begingroup$
    The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
    $endgroup$
    – Mark Viola
    Dec 20 '18 at 0:52












  • $begingroup$
    I am not sure what that means.
    $endgroup$
    – Sam
    Dec 20 '18 at 0:55










  • $begingroup$
    Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
    $endgroup$
    – zwim
    Dec 20 '18 at 0:58


















  • $begingroup$
    wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
    $endgroup$
    – ablmf
    Dec 20 '18 at 0:49






  • 1




    $begingroup$
    The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
    $endgroup$
    – Mark Viola
    Dec 20 '18 at 0:52












  • $begingroup$
    I am not sure what that means.
    $endgroup$
    – Sam
    Dec 20 '18 at 0:55










  • $begingroup$
    Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
    $endgroup$
    – zwim
    Dec 20 '18 at 0:58
















$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49




$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49




1




1




$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52






$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52














$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55




$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55












$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58




$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58










1 Answer
1






active

oldest

votes


















1












$begingroup$

For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.



Then:



$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$



In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$



For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.



So (taking $k = 0$ for a single example):



$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$



This is only the principal log though, there are an infinite number of possible solutions.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047025%2fhow-can-i-convert-a-bicdi-to-polar-form%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.



    Then:



    $$begin{split}
    z^w &= mathrm{e}^{log z^w} \
    &= mathrm{e}^{w log z} \
    &= mathrm{e}^{w (log |z| + iarg z)} \
    &= mathrm{e}^{(c + di) (log |z| + iarg z)} \
    &= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
    &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
    end{split}
    $$



    In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$



    For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.



    So (taking $k = 0$ for a single example):



    $$begin{split}
    z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
    &= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
    &= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
    &approx 331.56277234 mathrm{e}^{-0.964006563 i} \
    end{split}$$



    This is only the principal log though, there are an infinite number of possible solutions.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.



      Then:



      $$begin{split}
      z^w &= mathrm{e}^{log z^w} \
      &= mathrm{e}^{w log z} \
      &= mathrm{e}^{w (log |z| + iarg z)} \
      &= mathrm{e}^{(c + di) (log |z| + iarg z)} \
      &= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
      &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
      end{split}
      $$



      In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$



      For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.



      So (taking $k = 0$ for a single example):



      $$begin{split}
      z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
      &= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
      &= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
      &approx 331.56277234 mathrm{e}^{-0.964006563 i} \
      end{split}$$



      This is only the principal log though, there are an infinite number of possible solutions.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.



        Then:



        $$begin{split}
        z^w &= mathrm{e}^{log z^w} \
        &= mathrm{e}^{w log z} \
        &= mathrm{e}^{w (log |z| + iarg z)} \
        &= mathrm{e}^{(c + di) (log |z| + iarg z)} \
        &= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
        &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
        end{split}
        $$



        In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$



        For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.



        So (taking $k = 0$ for a single example):



        $$begin{split}
        z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
        &= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
        &= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
        &approx 331.56277234 mathrm{e}^{-0.964006563 i} \
        end{split}$$



        This is only the principal log though, there are an infinite number of possible solutions.






        share|cite|improve this answer











        $endgroup$



        For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.



        Then:



        $$begin{split}
        z^w &= mathrm{e}^{log z^w} \
        &= mathrm{e}^{w log z} \
        &= mathrm{e}^{w (log |z| + iarg z)} \
        &= mathrm{e}^{(c + di) (log |z| + iarg z)} \
        &= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
        &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
        end{split}
        $$



        In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$



        For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.



        So (taking $k = 0$ for a single example):



        $$begin{split}
        z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
        &= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
        &= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
        &approx 331.56277234 mathrm{e}^{-0.964006563 i} \
        end{split}$$



        This is only the principal log though, there are an infinite number of possible solutions.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 20 '18 at 5:18

























        answered Dec 20 '18 at 1:24









        OmnipotentEntityOmnipotentEntity

        462318




        462318






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047025%2fhow-can-i-convert-a-bicdi-to-polar-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna