How can I convert $(a + bi)^{c+di}$ to polar form?
$begingroup$
Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.
Thanks.
complex-numbers exponentiation polar-coordinates
$endgroup$
add a comment |
$begingroup$
Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.
Thanks.
complex-numbers exponentiation polar-coordinates
$endgroup$
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
1
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58
add a comment |
$begingroup$
Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.
Thanks.
complex-numbers exponentiation polar-coordinates
$endgroup$
Specifically, I need to convert $(-8i)^{2+πi/3}$ to polar form.
I understand I need to use Euler's formula, $e^{theta i} =cos theta + i sin theta$, but I'm not sure about the full process.
Thanks.
complex-numbers exponentiation polar-coordinates
complex-numbers exponentiation polar-coordinates
edited Dec 20 '18 at 7:09
Eric Wofsey
184k13211338
184k13211338
asked Dec 20 '18 at 0:44
SamSam
111
111
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
1
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58
add a comment |
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
1
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
1
1
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.
Then:
$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$
In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$
For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.
So (taking $k = 0$ for a single example):
$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$
This is only the principal log though, there are an infinite number of possible solutions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047025%2fhow-can-i-convert-a-bicdi-to-polar-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.
Then:
$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$
In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$
For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.
So (taking $k = 0$ for a single example):
$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$
This is only the principal log though, there are an infinite number of possible solutions.
$endgroup$
add a comment |
$begingroup$
For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.
Then:
$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$
In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$
For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.
So (taking $k = 0$ for a single example):
$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$
This is only the principal log though, there are an infinite number of possible solutions.
$endgroup$
add a comment |
$begingroup$
For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.
Then:
$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$
In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$
For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.
So (taking $k = 0$ for a single example):
$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$
This is only the principal log though, there are an infinite number of possible solutions.
$endgroup$
For any $z,w in mathbb{C}$, with $z = a + bi$ and $w = c+di$, with $a,b,c,d in mathbb{R}$.
Then:
$$begin{split}
z^w &= mathrm{e}^{log z^w} \
&= mathrm{e}^{w log z} \
&= mathrm{e}^{w (log |z| + iarg z)} \
&= mathrm{e}^{(c + di) (log |z| + iarg z)} \
&= mathrm{e}^{(c log |z| - d arg z+ i(carg z + d log |z|))} \
&= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
end{split}
$$
In this last line, the magnitude is $mathrm{e}^{(c log |z| - d arg z)}$ and the angle is $(carg z + d log |z|)$
For your specific case: $z = -8i$ and $w = 2 + pi/3 i$, so $|z| = 8$, $arg z = -pi/2 + 2pi k , (text{with} , k in mathbb{Z})$, $c = 2$, and $d = pi/3$.
So (taking $k = 0$ for a single example):
$$begin{split}
z^w &= mathrm{e}^{(c log |z| - d arg z)} mathrm{e}^{i(carg z + d log |z|)} \
&= mathrm{e}^{(2 times log 8 - pi/3 times -pi/2)} mathrm{e}^{i(2 times -pi/2 + pi/3 times log 8)} \
&= mathrm{e}^{(2 log 8 + pi^2/6)} mathrm{e}^{i(-pi+ pi/3 log 8)} \
&approx 331.56277234 mathrm{e}^{-0.964006563 i} \
end{split}$$
This is only the principal log though, there are an infinite number of possible solutions.
edited Dec 20 '18 at 5:18
answered Dec 20 '18 at 1:24
OmnipotentEntityOmnipotentEntity
462318
462318
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047025%2fhow-can-i-convert-a-bicdi-to-polar-form%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
wolframalpha.com/input/?i=(-8+I)%5E(2%2BPi%2F3)
$endgroup$
– ablmf
Dec 20 '18 at 0:49
1
$begingroup$
The function $z^w$ in defined as $z^w=e^{wlog(z)}$ and is multivalued since $log(z)=text{Log}(|z|)+iarg(z)$ where $arg(z)$is the multivalued argument of $z$.
$endgroup$
– Mark Viola
Dec 20 '18 at 0:52
$begingroup$
I am not sure what that means.
$endgroup$
– Sam
Dec 20 '18 at 0:55
$begingroup$
Have a look at this post and upvote if you like it. I detailed $(4+5i)^{2-3i}$ and explained about principal value and multiplicative factors. math.stackexchange.com/questions/2446611/…
$endgroup$
– zwim
Dec 20 '18 at 0:58