Compute this limit $lim_{xto0}frac{sin(x^2+frac{1}{x})-sinfrac{1}{x}}{x}$ using L'Hôpital's rule
I have asked this problem before, but I can't understand the explanation, I couldn't understand how the sin multiply for cos, and too multiply for A + and - B: $$sin(A)-sin(B)=2sinleft(frac{A-B}{2}right)cosleft(frac{A+B}{2}right)$$ and I don't understand in this step how/why the $A-B$ and $A+B$ was replaced by $frac{x^2}{2}$ and $frac{x^2}{2}+frac{1}{x}$ :
$$lim_{xto0}frac{sinleft(x^2+frac1xright)-sinleft(frac1xright)}{x}= lim_{xto0}frac{2sinleft(frac{x^2}{2}right)cosleft(frac{x^2}{2}+frac1xright)}{x}.$$
calculus limits
add a comment |
I have asked this problem before, but I can't understand the explanation, I couldn't understand how the sin multiply for cos, and too multiply for A + and - B: $$sin(A)-sin(B)=2sinleft(frac{A-B}{2}right)cosleft(frac{A+B}{2}right)$$ and I don't understand in this step how/why the $A-B$ and $A+B$ was replaced by $frac{x^2}{2}$ and $frac{x^2}{2}+frac{1}{x}$ :
$$lim_{xto0}frac{sinleft(x^2+frac1xright)-sinleft(frac1xright)}{x}= lim_{xto0}frac{2sinleft(frac{x^2}{2}right)cosleft(frac{x^2}{2}+frac1xright)}{x}.$$
calculus limits
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45
add a comment |
I have asked this problem before, but I can't understand the explanation, I couldn't understand how the sin multiply for cos, and too multiply for A + and - B: $$sin(A)-sin(B)=2sinleft(frac{A-B}{2}right)cosleft(frac{A+B}{2}right)$$ and I don't understand in this step how/why the $A-B$ and $A+B$ was replaced by $frac{x^2}{2}$ and $frac{x^2}{2}+frac{1}{x}$ :
$$lim_{xto0}frac{sinleft(x^2+frac1xright)-sinleft(frac1xright)}{x}= lim_{xto0}frac{2sinleft(frac{x^2}{2}right)cosleft(frac{x^2}{2}+frac1xright)}{x}.$$
calculus limits
I have asked this problem before, but I can't understand the explanation, I couldn't understand how the sin multiply for cos, and too multiply for A + and - B: $$sin(A)-sin(B)=2sinleft(frac{A-B}{2}right)cosleft(frac{A+B}{2}right)$$ and I don't understand in this step how/why the $A-B$ and $A+B$ was replaced by $frac{x^2}{2}$ and $frac{x^2}{2}+frac{1}{x}$ :
$$lim_{xto0}frac{sinleft(x^2+frac1xright)-sinleft(frac1xright)}{x}= lim_{xto0}frac{2sinleft(frac{x^2}{2}right)cosleft(frac{x^2}{2}+frac1xright)}{x}.$$
calculus limits
calculus limits
edited Dec 12 '18 at 14:51
Lorenzo B.
1,8402520
1,8402520
asked Jun 19 '13 at 17:59
user73276user73276
390310
390310
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45
add a comment |
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45
add a comment |
2 Answers
2
active
oldest
votes
Hint:its easy to prove $$sin(x+y)+sin(x-y)=2sin(x)cos(y)$$
then put $y=frac{A+B}{2}$,$x=frac{A-B}{2}$
$$ sin(x)sim x$$ $$ cosxsim1-frac{x^2}{2}$$ because $$lim_{xto0}frac{sinx}{x}=lim_{xto0}frac{cosx}{1-frac{x^2}{2}}=1$$
add a comment |
It's easier if you use the plain old addition formula:
$$sin{left(x^2+frac{1}{x}right)} = cos{x^2}, sin{frac{1}{x}} + sin{x^2} ,cos{frac{1}{x}}$$
which behaves as
$$left(1-frac12 x^2right) sin{frac{1}{x}} + x^2 cos{frac{1}{x}}$$
so that
$$frac{sin{left(x^2+frac{1}{x}right)} - sin{frac{1}{x}}}{x} sim frac{x^2 cos{frac{1}{x}} - (1/2)x^2 sin{frac{1}{x}}}{x}$$
which goes to zero as $x to 0$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f424701%2fcompute-this-limit-lim-x-to0-frac-sinx2-frac1x-sin-frac1xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:its easy to prove $$sin(x+y)+sin(x-y)=2sin(x)cos(y)$$
then put $y=frac{A+B}{2}$,$x=frac{A-B}{2}$
$$ sin(x)sim x$$ $$ cosxsim1-frac{x^2}{2}$$ because $$lim_{xto0}frac{sinx}{x}=lim_{xto0}frac{cosx}{1-frac{x^2}{2}}=1$$
add a comment |
Hint:its easy to prove $$sin(x+y)+sin(x-y)=2sin(x)cos(y)$$
then put $y=frac{A+B}{2}$,$x=frac{A-B}{2}$
$$ sin(x)sim x$$ $$ cosxsim1-frac{x^2}{2}$$ because $$lim_{xto0}frac{sinx}{x}=lim_{xto0}frac{cosx}{1-frac{x^2}{2}}=1$$
add a comment |
Hint:its easy to prove $$sin(x+y)+sin(x-y)=2sin(x)cos(y)$$
then put $y=frac{A+B}{2}$,$x=frac{A-B}{2}$
$$ sin(x)sim x$$ $$ cosxsim1-frac{x^2}{2}$$ because $$lim_{xto0}frac{sinx}{x}=lim_{xto0}frac{cosx}{1-frac{x^2}{2}}=1$$
Hint:its easy to prove $$sin(x+y)+sin(x-y)=2sin(x)cos(y)$$
then put $y=frac{A+B}{2}$,$x=frac{A-B}{2}$
$$ sin(x)sim x$$ $$ cosxsim1-frac{x^2}{2}$$ because $$lim_{xto0}frac{sinx}{x}=lim_{xto0}frac{cosx}{1-frac{x^2}{2}}=1$$
edited Jun 19 '13 at 18:39
answered Jun 19 '13 at 18:27
M.HM.H
7,2371553
7,2371553
add a comment |
add a comment |
It's easier if you use the plain old addition formula:
$$sin{left(x^2+frac{1}{x}right)} = cos{x^2}, sin{frac{1}{x}} + sin{x^2} ,cos{frac{1}{x}}$$
which behaves as
$$left(1-frac12 x^2right) sin{frac{1}{x}} + x^2 cos{frac{1}{x}}$$
so that
$$frac{sin{left(x^2+frac{1}{x}right)} - sin{frac{1}{x}}}{x} sim frac{x^2 cos{frac{1}{x}} - (1/2)x^2 sin{frac{1}{x}}}{x}$$
which goes to zero as $x to 0$.
add a comment |
It's easier if you use the plain old addition formula:
$$sin{left(x^2+frac{1}{x}right)} = cos{x^2}, sin{frac{1}{x}} + sin{x^2} ,cos{frac{1}{x}}$$
which behaves as
$$left(1-frac12 x^2right) sin{frac{1}{x}} + x^2 cos{frac{1}{x}}$$
so that
$$frac{sin{left(x^2+frac{1}{x}right)} - sin{frac{1}{x}}}{x} sim frac{x^2 cos{frac{1}{x}} - (1/2)x^2 sin{frac{1}{x}}}{x}$$
which goes to zero as $x to 0$.
add a comment |
It's easier if you use the plain old addition formula:
$$sin{left(x^2+frac{1}{x}right)} = cos{x^2}, sin{frac{1}{x}} + sin{x^2} ,cos{frac{1}{x}}$$
which behaves as
$$left(1-frac12 x^2right) sin{frac{1}{x}} + x^2 cos{frac{1}{x}}$$
so that
$$frac{sin{left(x^2+frac{1}{x}right)} - sin{frac{1}{x}}}{x} sim frac{x^2 cos{frac{1}{x}} - (1/2)x^2 sin{frac{1}{x}}}{x}$$
which goes to zero as $x to 0$.
It's easier if you use the plain old addition formula:
$$sin{left(x^2+frac{1}{x}right)} = cos{x^2}, sin{frac{1}{x}} + sin{x^2} ,cos{frac{1}{x}}$$
which behaves as
$$left(1-frac12 x^2right) sin{frac{1}{x}} + x^2 cos{frac{1}{x}}$$
so that
$$frac{sin{left(x^2+frac{1}{x}right)} - sin{frac{1}{x}}}{x} sim frac{x^2 cos{frac{1}{x}} - (1/2)x^2 sin{frac{1}{x}}}{x}$$
which goes to zero as $x to 0$.
answered Jun 19 '13 at 19:07
Ron GordonRon Gordon
122k14154263
122k14154263
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f424701%2fcompute-this-limit-lim-x-to0-frac-sinx2-frac1x-sin-frac1xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
If you have asked this problem before, maybe you could give the link to that previous question?
– celtschk
Jun 19 '13 at 18:18
@user73276:i cant use L'hôpital's rule because $lim_{xto0}{sin(x^2+frac{1}{x})-sinfrac{1}{x}}neq0$
– M.H
Jun 19 '13 at 18:45