Use Laplace method to solve $I(x)= int^{frac{pi}{2}}_0 (1+t^2)e^{-xcosh t}dt$
Consider the integral
$$I(x)= int^{frac{pi}{2}}_0 (1+t^2)e^{-xcosh t}dt$$
Use Laplace's method to show that
$$I(x) = sqrt{frac{pi}{2}}e^{-x}+cfrac{e^{-x}}{x}, as space x to infty$$
where $c$ is a constant you must determine.
Where I have got to so far:
let $phi(t)=-xcosh t$
$phi'(t)=xsinh t$
$phi''(t)=xcosh t$
$$I(x) sim int_0^{epsilon}(1+t^2)e^{-xcosh t}dt space + space int_{epsilon}^{frac{pi}{2}}(1+t^2)e^{-xcosh t}dt$$
integration laplace-method
add a comment |
Consider the integral
$$I(x)= int^{frac{pi}{2}}_0 (1+t^2)e^{-xcosh t}dt$$
Use Laplace's method to show that
$$I(x) = sqrt{frac{pi}{2}}e^{-x}+cfrac{e^{-x}}{x}, as space x to infty$$
where $c$ is a constant you must determine.
Where I have got to so far:
let $phi(t)=-xcosh t$
$phi'(t)=xsinh t$
$phi''(t)=xcosh t$
$$I(x) sim int_0^{epsilon}(1+t^2)e^{-xcosh t}dt space + space int_{epsilon}^{frac{pi}{2}}(1+t^2)e^{-xcosh t}dt$$
integration laplace-method
add a comment |
Consider the integral
$$I(x)= int^{frac{pi}{2}}_0 (1+t^2)e^{-xcosh t}dt$$
Use Laplace's method to show that
$$I(x) = sqrt{frac{pi}{2}}e^{-x}+cfrac{e^{-x}}{x}, as space x to infty$$
where $c$ is a constant you must determine.
Where I have got to so far:
let $phi(t)=-xcosh t$
$phi'(t)=xsinh t$
$phi''(t)=xcosh t$
$$I(x) sim int_0^{epsilon}(1+t^2)e^{-xcosh t}dt space + space int_{epsilon}^{frac{pi}{2}}(1+t^2)e^{-xcosh t}dt$$
integration laplace-method
Consider the integral
$$I(x)= int^{frac{pi}{2}}_0 (1+t^2)e^{-xcosh t}dt$$
Use Laplace's method to show that
$$I(x) = sqrt{frac{pi}{2}}e^{-x}+cfrac{e^{-x}}{x}, as space x to infty$$
where $c$ is a constant you must determine.
Where I have got to so far:
let $phi(t)=-xcosh t$
$phi'(t)=xsinh t$
$phi''(t)=xcosh t$
$$I(x) sim int_0^{epsilon}(1+t^2)e^{-xcosh t}dt space + space int_{epsilon}^{frac{pi}{2}}(1+t^2)e^{-xcosh t}dt$$
integration laplace-method
integration laplace-method
edited Dec 12 '18 at 15:30
Jon
4,39011122
4,39011122
asked Dec 12 '18 at 15:14
Ben JonesBen Jones
19111
19111
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
A bit too long of a comment:
Are you sure about the claim? If I expand the exponent $-xcosh(t) + log(1+t^2)$ about its maximum at $t=0$ I get
$$
I(x) sim int_0^epsilon {rm e}^{-x-frac{x-2}{2}, t^2} , {rm d}t = sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , {rm erf}left( sqrt{frac{x-2}{2}} , epsilon right) sim sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , .
$$
If I'm not mistaken I think the next term should come from
$$
int_0^{frac{pi}{2}} left{ {rm e}^{-x-frac{x-2}{2},t^2} - (1+t^2) , {rm e}^{-xcosh(t)} right} {rm d}t sim frac{sqrt{2pi}}{16 , x^{3/2}}, {rm e}^{-x} , ,
$$
so we would have
$$
int_0^{frac{pi}{2}} (1+t^2) , {rm e}^{-x cosh(t)} , {rm d}t sim sqrt{frac{pi}{2x}} , {rm e}^{-x} + frac{7sqrt{2pi}}{16 , x^{3/2}} , {rm e}^{-x} , .
$$
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036795%2fuse-laplace-method-to-solve-ix-int-frac-pi2-0-1t2e-x-cosh-tdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
A bit too long of a comment:
Are you sure about the claim? If I expand the exponent $-xcosh(t) + log(1+t^2)$ about its maximum at $t=0$ I get
$$
I(x) sim int_0^epsilon {rm e}^{-x-frac{x-2}{2}, t^2} , {rm d}t = sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , {rm erf}left( sqrt{frac{x-2}{2}} , epsilon right) sim sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , .
$$
If I'm not mistaken I think the next term should come from
$$
int_0^{frac{pi}{2}} left{ {rm e}^{-x-frac{x-2}{2},t^2} - (1+t^2) , {rm e}^{-xcosh(t)} right} {rm d}t sim frac{sqrt{2pi}}{16 , x^{3/2}}, {rm e}^{-x} , ,
$$
so we would have
$$
int_0^{frac{pi}{2}} (1+t^2) , {rm e}^{-x cosh(t)} , {rm d}t sim sqrt{frac{pi}{2x}} , {rm e}^{-x} + frac{7sqrt{2pi}}{16 , x^{3/2}} , {rm e}^{-x} , .
$$
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
add a comment |
A bit too long of a comment:
Are you sure about the claim? If I expand the exponent $-xcosh(t) + log(1+t^2)$ about its maximum at $t=0$ I get
$$
I(x) sim int_0^epsilon {rm e}^{-x-frac{x-2}{2}, t^2} , {rm d}t = sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , {rm erf}left( sqrt{frac{x-2}{2}} , epsilon right) sim sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , .
$$
If I'm not mistaken I think the next term should come from
$$
int_0^{frac{pi}{2}} left{ {rm e}^{-x-frac{x-2}{2},t^2} - (1+t^2) , {rm e}^{-xcosh(t)} right} {rm d}t sim frac{sqrt{2pi}}{16 , x^{3/2}}, {rm e}^{-x} , ,
$$
so we would have
$$
int_0^{frac{pi}{2}} (1+t^2) , {rm e}^{-x cosh(t)} , {rm d}t sim sqrt{frac{pi}{2x}} , {rm e}^{-x} + frac{7sqrt{2pi}}{16 , x^{3/2}} , {rm e}^{-x} , .
$$
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
add a comment |
A bit too long of a comment:
Are you sure about the claim? If I expand the exponent $-xcosh(t) + log(1+t^2)$ about its maximum at $t=0$ I get
$$
I(x) sim int_0^epsilon {rm e}^{-x-frac{x-2}{2}, t^2} , {rm d}t = sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , {rm erf}left( sqrt{frac{x-2}{2}} , epsilon right) sim sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , .
$$
If I'm not mistaken I think the next term should come from
$$
int_0^{frac{pi}{2}} left{ {rm e}^{-x-frac{x-2}{2},t^2} - (1+t^2) , {rm e}^{-xcosh(t)} right} {rm d}t sim frac{sqrt{2pi}}{16 , x^{3/2}}, {rm e}^{-x} , ,
$$
so we would have
$$
int_0^{frac{pi}{2}} (1+t^2) , {rm e}^{-x cosh(t)} , {rm d}t sim sqrt{frac{pi}{2x}} , {rm e}^{-x} + frac{7sqrt{2pi}}{16 , x^{3/2}} , {rm e}^{-x} , .
$$
A bit too long of a comment:
Are you sure about the claim? If I expand the exponent $-xcosh(t) + log(1+t^2)$ about its maximum at $t=0$ I get
$$
I(x) sim int_0^epsilon {rm e}^{-x-frac{x-2}{2}, t^2} , {rm d}t = sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , {rm erf}left( sqrt{frac{x-2}{2}} , epsilon right) sim sqrt{frac{pi/2}{x-2}} , {rm e}^{-x} , .
$$
If I'm not mistaken I think the next term should come from
$$
int_0^{frac{pi}{2}} left{ {rm e}^{-x-frac{x-2}{2},t^2} - (1+t^2) , {rm e}^{-xcosh(t)} right} {rm d}t sim frac{sqrt{2pi}}{16 , x^{3/2}}, {rm e}^{-x} , ,
$$
so we would have
$$
int_0^{frac{pi}{2}} (1+t^2) , {rm e}^{-x cosh(t)} , {rm d}t sim sqrt{frac{pi}{2x}} , {rm e}^{-x} + frac{7sqrt{2pi}}{16 , x^{3/2}} , {rm e}^{-x} , .
$$
edited Dec 12 '18 at 19:54
answered Dec 12 '18 at 16:57
DigerDiger
1,6021413
1,6021413
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
add a comment |
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
For "large" $x$, $x-2sim x$. So, you have recovered the first term in the expansion that corrects the first term provided in the OP.
– Mark Viola
Dec 12 '18 at 17:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036795%2fuse-laplace-method-to-solve-ix-int-frac-pi2-0-1t2e-x-cosh-tdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown