Half of Vandermonde's Identity
We know Vandermonde's Identity, which states
$sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.
Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$
or at least
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$
true?
Maybe someone here has even some general insight on other step widths?
Thank you!
combinatorics analysis binomial-coefficients
add a comment |
We know Vandermonde's Identity, which states
$sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.
Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$
or at least
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$
true?
Maybe someone here has even some general insight on other step widths?
Thank you!
combinatorics analysis binomial-coefficients
add a comment |
We know Vandermonde's Identity, which states
$sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.
Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$
or at least
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$
true?
Maybe someone here has even some general insight on other step widths?
Thank you!
combinatorics analysis binomial-coefficients
We know Vandermonde's Identity, which states
$sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.
Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$
or at least
$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$
true?
Maybe someone here has even some general insight on other step widths?
Thank you!
combinatorics analysis binomial-coefficients
combinatorics analysis binomial-coefficients
edited Dec 12 '18 at 23:13
drix
asked Dec 12 '18 at 23:07
drixdrix
364
364
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance
begin{align*}
binom{n}{k}=[z^k](1+z)^ntag{1}
end{align*}
We assume wlog $ngeq m$ and obtain
begin{align*}
color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
&=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
&=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
&=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
&=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
&,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
end{align*}
Comment:
In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.
In (3) we use the linearity of the coefficient of operator.
In (4) we write the sum as polynomial in closed form.
In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.
In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (7) we select the coefficient of $z^{r-2k}$.
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
add a comment |
In general, having the ogf (z-Transform)
$$
F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
$$
then
$$
{1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
= sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
$$
But unfortunately, the truncated binomial expansion
$$
sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
$$
does not have in general ($r<n$) a compact closed expression.
We can go either through the Hypergeometric version
$$
sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
binom{m}{k} binom{n}{r-k},z^{,k} }
= binom{n}{r} ;{}_2F_{,1} left( {matrix{
{ - m,; - r} cr
{n - r + 1} cr
} ;left| {,z} right.} right)
$$
or through the double ogf
$$
eqalign{
& G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
& = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
& = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
$$
Then for instance we have
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
$$
which clearly indicates what is the difference between
$$
{1 over 2}binom{n+m}{r}
quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j} , binom{n}{r-2j} }
$$
Of course the complement will be
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
$$
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037356%2fhalf-of-vandermondes-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance
begin{align*}
binom{n}{k}=[z^k](1+z)^ntag{1}
end{align*}
We assume wlog $ngeq m$ and obtain
begin{align*}
color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
&=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
&=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
&=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
&=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
&,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
end{align*}
Comment:
In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.
In (3) we use the linearity of the coefficient of operator.
In (4) we write the sum as polynomial in closed form.
In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.
In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (7) we select the coefficient of $z^{r-2k}$.
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
add a comment |
We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance
begin{align*}
binom{n}{k}=[z^k](1+z)^ntag{1}
end{align*}
We assume wlog $ngeq m$ and obtain
begin{align*}
color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
&=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
&=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
&=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
&=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
&,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
end{align*}
Comment:
In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.
In (3) we use the linearity of the coefficient of operator.
In (4) we write the sum as polynomial in closed form.
In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.
In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (7) we select the coefficient of $z^{r-2k}$.
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
add a comment |
We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance
begin{align*}
binom{n}{k}=[z^k](1+z)^ntag{1}
end{align*}
We assume wlog $ngeq m$ and obtain
begin{align*}
color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
&=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
&=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
&=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
&=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
&,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
end{align*}
Comment:
In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.
In (3) we use the linearity of the coefficient of operator.
In (4) we write the sum as polynomial in closed form.
In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.
In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (7) we select the coefficient of $z^{r-2k}$.
We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance
begin{align*}
binom{n}{k}=[z^k](1+z)^ntag{1}
end{align*}
We assume wlog $ngeq m$ and obtain
begin{align*}
color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
&=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
&=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
&=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
&=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
&=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
&,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
end{align*}
Comment:
In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.
In (3) we use the linearity of the coefficient of operator.
In (4) we write the sum as polynomial in closed form.
In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.
In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.
In (7) we select the coefficient of $z^{r-2k}$.
edited Dec 14 '18 at 6:35
answered Dec 13 '18 at 22:30
Markus ScheuerMarkus Scheuer
60.3k455144
60.3k455144
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
add a comment |
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
– drix
Dec 14 '18 at 15:16
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
@drix: You're welcome. Good to see the answer is helpful.
– Markus Scheuer
Dec 14 '18 at 15:43
add a comment |
In general, having the ogf (z-Transform)
$$
F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
$$
then
$$
{1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
= sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
$$
But unfortunately, the truncated binomial expansion
$$
sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
$$
does not have in general ($r<n$) a compact closed expression.
We can go either through the Hypergeometric version
$$
sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
binom{m}{k} binom{n}{r-k},z^{,k} }
= binom{n}{r} ;{}_2F_{,1} left( {matrix{
{ - m,; - r} cr
{n - r + 1} cr
} ;left| {,z} right.} right)
$$
or through the double ogf
$$
eqalign{
& G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
& = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
& = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
$$
Then for instance we have
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
$$
which clearly indicates what is the difference between
$$
{1 over 2}binom{n+m}{r}
quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j} , binom{n}{r-2j} }
$$
Of course the complement will be
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
$$
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
add a comment |
In general, having the ogf (z-Transform)
$$
F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
$$
then
$$
{1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
= sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
$$
But unfortunately, the truncated binomial expansion
$$
sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
$$
does not have in general ($r<n$) a compact closed expression.
We can go either through the Hypergeometric version
$$
sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
binom{m}{k} binom{n}{r-k},z^{,k} }
= binom{n}{r} ;{}_2F_{,1} left( {matrix{
{ - m,; - r} cr
{n - r + 1} cr
} ;left| {,z} right.} right)
$$
or through the double ogf
$$
eqalign{
& G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
& = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
& = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
$$
Then for instance we have
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
$$
which clearly indicates what is the difference between
$$
{1 over 2}binom{n+m}{r}
quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j} , binom{n}{r-2j} }
$$
Of course the complement will be
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
$$
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
add a comment |
In general, having the ogf (z-Transform)
$$
F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
$$
then
$$
{1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
= sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
$$
But unfortunately, the truncated binomial expansion
$$
sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
$$
does not have in general ($r<n$) a compact closed expression.
We can go either through the Hypergeometric version
$$
sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
binom{m}{k} binom{n}{r-k},z^{,k} }
= binom{n}{r} ;{}_2F_{,1} left( {matrix{
{ - m,; - r} cr
{n - r + 1} cr
} ;left| {,z} right.} right)
$$
or through the double ogf
$$
eqalign{
& G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
& = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
& = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
$$
Then for instance we have
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
$$
which clearly indicates what is the difference between
$$
{1 over 2}binom{n+m}{r}
quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j} , binom{n}{r-2j} }
$$
Of course the complement will be
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
$$
In general, having the ogf (z-Transform)
$$
F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
$$
then
$$
{1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
= sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
$$
But unfortunately, the truncated binomial expansion
$$
sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
$$
does not have in general ($r<n$) a compact closed expression.
We can go either through the Hypergeometric version
$$
sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
binom{m}{k} binom{n}{r-k},z^{,k} }
= binom{n}{r} ;{}_2F_{,1} left( {matrix{
{ - m,; - r} cr
{n - r + 1} cr
} ;left| {,z} right.} right)
$$
or through the double ogf
$$
eqalign{
& G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
& = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
& = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
$$
Then for instance we have
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
& = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
$$
which clearly indicates what is the difference between
$$
{1 over 2}binom{n+m}{r}
quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j} , binom{n}{r-2j} }
$$
Of course the complement will be
$$
eqalign{
& sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
& = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
& = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
$$
edited Dec 14 '18 at 22:15
answered Dec 13 '18 at 1:31
G CabG Cab
18k31237
18k31237
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
add a comment |
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
Thank you very much! I will have a closer look on your answer this weekend.
– drix
Dec 14 '18 at 15:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
it's an interesting subject also for me ! waiting for you feedback.
– G Cab
Dec 14 '18 at 22:18
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037356%2fhalf-of-vandermondes-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown