Use the spherical coordinates to compute the integral $intlimits_{B} z^2 dx dy dz$ where B is defined by...
, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?
calculus multivariable-calculus substitution spherical-coordinates change-of-variable
add a comment |
, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?
calculus multivariable-calculus substitution spherical-coordinates change-of-variable
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12
add a comment |
, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?
calculus multivariable-calculus substitution spherical-coordinates change-of-variable
, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?
calculus multivariable-calculus substitution spherical-coordinates change-of-variable
calculus multivariable-calculus substitution spherical-coordinates change-of-variable
edited Dec 12 '18 at 23:23
Batominovski
1
1
asked Dec 12 '18 at 23:02
Mohammed ShahidMohammed Shahid
1457
1457
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12
add a comment |
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12
add a comment |
4 Answers
4
active
oldest
votes
Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$
which ultimately evaluates to
$$frac{124pi}{15}$$
add a comment |
Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.
You have
$x = rcos thetasin phi\
y = rcosthetacosphi\
z = rsintheta$
The more conventional configuration:
$x = rcos thetasin phi\
y = rsinthetasinphi\
z = rcosphi$
In the conventional configuration
$int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$
In the non-standard configuration.
The Jacobian will be $r^2costheta$
The limits will change as well.
$int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$
add a comment |
Your work can be remedied. The correct volume form of your version of spherical coordinates is
$$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
$$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$
Alternatively, by symmetry,
$$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
Thus,
$$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
Let $text{d}^2Omega$ denote the solid angle element, then
$$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
$$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$
add a comment |
According to spherical coordinates system with should have
$x=rsintheta cos phi$
$y=rsin theta sin phi$
$z=rcos theta$
and the set up should be sligtly different
$$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$
and the result is equal to $frac{pi124}{15}$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037351%2fuse-the-spherical-coordinates-to-compute-the-integral-int-limits-b-z2-dx-dy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$
which ultimately evaluates to
$$frac{124pi}{15}$$
add a comment |
Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$
which ultimately evaluates to
$$frac{124pi}{15}$$
add a comment |
Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$
which ultimately evaluates to
$$frac{124pi}{15}$$
Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$
which ultimately evaluates to
$$frac{124pi}{15}$$
answered Dec 12 '18 at 23:22
user170231user170231
4,03711329
4,03711329
add a comment |
add a comment |
Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.
You have
$x = rcos thetasin phi\
y = rcosthetacosphi\
z = rsintheta$
The more conventional configuration:
$x = rcos thetasin phi\
y = rsinthetasinphi\
z = rcosphi$
In the conventional configuration
$int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$
In the non-standard configuration.
The Jacobian will be $r^2costheta$
The limits will change as well.
$int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$
add a comment |
Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.
You have
$x = rcos thetasin phi\
y = rcosthetacosphi\
z = rsintheta$
The more conventional configuration:
$x = rcos thetasin phi\
y = rsinthetasinphi\
z = rcosphi$
In the conventional configuration
$int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$
In the non-standard configuration.
The Jacobian will be $r^2costheta$
The limits will change as well.
$int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$
add a comment |
Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.
You have
$x = rcos thetasin phi\
y = rcosthetacosphi\
z = rsintheta$
The more conventional configuration:
$x = rcos thetasin phi\
y = rsinthetasinphi\
z = rcosphi$
In the conventional configuration
$int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$
In the non-standard configuration.
The Jacobian will be $r^2costheta$
The limits will change as well.
$int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$
Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.
You have
$x = rcos thetasin phi\
y = rcosthetacosphi\
z = rsintheta$
The more conventional configuration:
$x = rcos thetasin phi\
y = rsinthetasinphi\
z = rcosphi$
In the conventional configuration
$int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$
In the non-standard configuration.
The Jacobian will be $r^2costheta$
The limits will change as well.
$int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$
answered Dec 12 '18 at 23:19
Doug MDoug M
44.2k31854
44.2k31854
add a comment |
add a comment |
Your work can be remedied. The correct volume form of your version of spherical coordinates is
$$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
$$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$
Alternatively, by symmetry,
$$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
Thus,
$$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
Let $text{d}^2Omega$ denote the solid angle element, then
$$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
$$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$
add a comment |
Your work can be remedied. The correct volume form of your version of spherical coordinates is
$$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
$$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$
Alternatively, by symmetry,
$$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
Thus,
$$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
Let $text{d}^2Omega$ denote the solid angle element, then
$$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
$$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$
add a comment |
Your work can be remedied. The correct volume form of your version of spherical coordinates is
$$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
$$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$
Alternatively, by symmetry,
$$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
Thus,
$$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
Let $text{d}^2Omega$ denote the solid angle element, then
$$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
$$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$
Your work can be remedied. The correct volume form of your version of spherical coordinates is
$$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
$$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$
Alternatively, by symmetry,
$$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
Thus,
$$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
Let $text{d}^2Omega$ denote the solid angle element, then
$$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
$$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$
answered Dec 12 '18 at 23:35
BatominovskiBatominovski
1
1
add a comment |
add a comment |
According to spherical coordinates system with should have
$x=rsintheta cos phi$
$y=rsin theta sin phi$
$z=rcos theta$
and the set up should be sligtly different
$$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$
and the result is equal to $frac{pi124}{15}$.
add a comment |
According to spherical coordinates system with should have
$x=rsintheta cos phi$
$y=rsin theta sin phi$
$z=rcos theta$
and the set up should be sligtly different
$$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$
and the result is equal to $frac{pi124}{15}$.
add a comment |
According to spherical coordinates system with should have
$x=rsintheta cos phi$
$y=rsin theta sin phi$
$z=rcos theta$
and the set up should be sligtly different
$$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$
and the result is equal to $frac{pi124}{15}$.
According to spherical coordinates system with should have
$x=rsintheta cos phi$
$y=rsin theta sin phi$
$z=rcos theta$
and the set up should be sligtly different
$$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$
and the result is equal to $frac{pi124}{15}$.
edited Dec 12 '18 at 23:57
answered Dec 12 '18 at 23:24
gimusigimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037351%2fuse-the-spherical-coordinates-to-compute-the-integral-int-limits-b-z2-dx-dy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09
@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12