Use the spherical coordinates to compute the integral $intlimits_{B} z^2 dx dy dz$ where B is defined by...












3














Here is what I worked out, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?










share|cite|improve this question
























  • You seemed to mess up $theta$ and $phi$.
    – Quang Hoang
    Dec 12 '18 at 23:09










  • @QuangHoang do you mean for the definition of z?
    – Mohammed Shahid
    Dec 12 '18 at 23:12
















3














Here is what I worked out, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?










share|cite|improve this question
























  • You seemed to mess up $theta$ and $phi$.
    – Quang Hoang
    Dec 12 '18 at 23:09










  • @QuangHoang do you mean for the definition of z?
    – Mohammed Shahid
    Dec 12 '18 at 23:12














3












3








3







Here is what I worked out, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?










share|cite|improve this question















Here is what I worked out, however the answer I got to is different than the answer sheet. The answer sheet says that it should be $frac{62}{15}$ Am I making some mistake or is the answer sheet incorrect?







calculus multivariable-calculus substitution spherical-coordinates change-of-variable






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 23:23









Batominovski

1




1










asked Dec 12 '18 at 23:02









Mohammed ShahidMohammed Shahid

1457




1457












  • You seemed to mess up $theta$ and $phi$.
    – Quang Hoang
    Dec 12 '18 at 23:09










  • @QuangHoang do you mean for the definition of z?
    – Mohammed Shahid
    Dec 12 '18 at 23:12


















  • You seemed to mess up $theta$ and $phi$.
    – Quang Hoang
    Dec 12 '18 at 23:09










  • @QuangHoang do you mean for the definition of z?
    – Mohammed Shahid
    Dec 12 '18 at 23:12
















You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09




You seemed to mess up $theta$ and $phi$.
– Quang Hoang
Dec 12 '18 at 23:09












@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12




@QuangHoang do you mean for the definition of z?
– Mohammed Shahid
Dec 12 '18 at 23:12










4 Answers
4






active

oldest

votes


















3














Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
$$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
we get the integral
$$begin{align*}
iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
&=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
&=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
end{align*}$$

which ultimately evaluates to




$$frac{124pi}{15}$$







share|cite|improve this answer





























    3














    Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.



    You have



    $x = rcos thetasin phi\
    y = rcosthetacosphi\
    z = rsintheta$



    The more conventional configuration:



    $x = rcos thetasin phi\
    y = rsinthetasinphi\
    z = rcosphi$



    In the conventional configuration



    $int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$



    In the non-standard configuration.



    The Jacobian will be $r^2costheta$



    The limits will change as well.



    $int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$






    share|cite|improve this answer





























      3














      Your work can be remedied. The correct volume form of your version of spherical coordinates is
      $$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
      The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
      $$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
      Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$





      Alternatively, by symmetry,
      $$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
      Thus,
      $$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
      Let $text{d}^2Omega$ denote the solid angle element, then
      $$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
      where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
      $$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$






      share|cite|improve this answer





























        1














        According to spherical coordinates system with should have




        • $x=rsintheta cos phi$


        • $y=rsin theta sin phi$


        • $z=rcos theta$



        and the set up should be sligtly different



        $$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$



        and the result is equal to $frac{pi124}{15}$.






        share|cite|improve this answer























          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037351%2fuse-the-spherical-coordinates-to-compute-the-integral-int-limits-b-z2-dx-dy%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
          $$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
          we get the integral
          $$begin{align*}
          iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
          &=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
          &=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
          end{align*}$$

          which ultimately evaluates to




          $$frac{124pi}{15}$$







          share|cite|improve this answer


























            3














            Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
            $$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
            we get the integral
            $$begin{align*}
            iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
            &=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
            &=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
            end{align*}$$

            which ultimately evaluates to




            $$frac{124pi}{15}$$







            share|cite|improve this answer
























              3












              3








              3






              Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
              $$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
              we get the integral
              $$begin{align*}
              iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
              &=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
              &=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
              end{align*}$$

              which ultimately evaluates to




              $$frac{124pi}{15}$$







              share|cite|improve this answer












              Neither your answer nor the suggested one seem correct to me... Using the standard conversion to spherical coordinates, namely
              $$begin{cases}x=rcosthetasinvarphi\y=rsinthetasinvarphi\z=rcosphiend{cases}$$
              we get the integral
              $$begin{align*}
              iiint_Bz^2,mathrm dx,mathrm dy,mathrm dz&=int_{r=1}^{r=2}int_{theta=0}^{theta=2pi}int_{varphi=0}^{varphi=pi}(rcosvarphi)^2r^2sinvarphi,mathrm dvarphi,mathrm dtheta,mathrm dr\[1ex]
              &=2piint_{r=1}^{r=2}int_{varphi=0}^{varphi=pi}r^4cos^2varphisinvarphi,mathrm dvarphi,mathrm dr\[1ex]
              &=fracpi2left(int_{r=1}^{r=2}r^4,mathrm drright)left(int_{varphi=0}^{varphi=pi}sinvarphi+sin3varphi,mathrm dvarphiright)
              end{align*}$$

              which ultimately evaluates to




              $$frac{124pi}{15}$$








              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 12 '18 at 23:22









              user170231user170231

              4,03711329




              4,03711329























                  3














                  Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.



                  You have



                  $x = rcos thetasin phi\
                  y = rcosthetacosphi\
                  z = rsintheta$



                  The more conventional configuration:



                  $x = rcos thetasin phi\
                  y = rsinthetasinphi\
                  z = rcosphi$



                  In the conventional configuration



                  $int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$



                  In the non-standard configuration.



                  The Jacobian will be $r^2costheta$



                  The limits will change as well.



                  $int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$






                  share|cite|improve this answer


























                    3














                    Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.



                    You have



                    $x = rcos thetasin phi\
                    y = rcosthetacosphi\
                    z = rsintheta$



                    The more conventional configuration:



                    $x = rcos thetasin phi\
                    y = rsinthetasinphi\
                    z = rcosphi$



                    In the conventional configuration



                    $int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$



                    In the non-standard configuration.



                    The Jacobian will be $r^2costheta$



                    The limits will change as well.



                    $int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$






                    share|cite|improve this answer
























                      3












                      3








                      3






                      Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.



                      You have



                      $x = rcos thetasin phi\
                      y = rcosthetacosphi\
                      z = rsintheta$



                      The more conventional configuration:



                      $x = rcos thetasin phi\
                      y = rsinthetasinphi\
                      z = rcosphi$



                      In the conventional configuration



                      $int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$



                      In the non-standard configuration.



                      The Jacobian will be $r^2costheta$



                      The limits will change as well.



                      $int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$






                      share|cite|improve this answer












                      Your set-up for polar coordinates is not the standard one. That doesn't mean you can't adjust from there. However, you have then gone on to use the limits and Jacobian associated with the standard set-up.



                      You have



                      $x = rcos thetasin phi\
                      y = rcosthetacosphi\
                      z = rsintheta$



                      The more conventional configuration:



                      $x = rcos thetasin phi\
                      y = rsinthetasinphi\
                      z = rcosphi$



                      In the conventional configuration



                      $int_0^{2pi}int_0^{pi}int_1^2 (rcosphi)^2(r^2sinphi) dr dphi dtheta$



                      In the non-standard configuration.



                      The Jacobian will be $r^2costheta$



                      The limits will change as well.



                      $int_0^{2pi}int_{-frac {pi}{2}}^{frac {pi}{2}}int_1^2 (rsintheta)^2(r^2costheta) dr dtheta dphi$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 12 '18 at 23:19









                      Doug MDoug M

                      44.2k31854




                      44.2k31854























                          3














                          Your work can be remedied. The correct volume form of your version of spherical coordinates is
                          $$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
                          The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
                          $$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
                          Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$





                          Alternatively, by symmetry,
                          $$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
                          Thus,
                          $$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
                          Let $text{d}^2Omega$ denote the solid angle element, then
                          $$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
                          where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
                          $$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$






                          share|cite|improve this answer


























                            3














                            Your work can be remedied. The correct volume form of your version of spherical coordinates is
                            $$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
                            The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
                            $$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
                            Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$





                            Alternatively, by symmetry,
                            $$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
                            Thus,
                            $$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
                            Let $text{d}^2Omega$ denote the solid angle element, then
                            $$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
                            where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
                            $$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$






                            share|cite|improve this answer
























                              3












                              3








                              3






                              Your work can be remedied. The correct volume form of your version of spherical coordinates is
                              $$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
                              The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
                              $$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
                              Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$





                              Alternatively, by symmetry,
                              $$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
                              Thus,
                              $$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
                              Let $text{d}^2Omega$ denote the solid angle element, then
                              $$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
                              where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
                              $$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$






                              share|cite|improve this answer












                              Your work can be remedied. The correct volume form of your version of spherical coordinates is
                              $$r^2,{color{red}{cos(theta)}},text{d}phi,text{d}theta,text{d}r,.$$
                              The angle $theta$ runs from $-dfrac{pi}{2}$ to $+dfrac{pi}{2}$, not $0$ to $pi$. Therefore,
                              $$I:=iiint_B,z^2,text{d}x,text{d}y,text{d}z=int_1^2,r^4,text{d}r,int_{-frac{pi}{2}}^{+frac{pi}{2}},sin^2(theta),cos(theta),text{d}theta,int_0^{2pi},text{d}phi,.$$
                              Ergo, $$I=left(frac{2^5-1^5}{5}right),left(frac{(+1)^3-(-1)^3}{3}right),(2pi)=frac{124pi}{15},.$$





                              Alternatively, by symmetry,
                              $$I=iiint_B,x^2,text{d}x,text{d}y,text{d}z=iiint_B,y^2,text{d}x,text{d}y,text{d}z,.$$
                              Thus,
                              $$I=frac13,iiint_B,left(x^2+y^2+z^2right),text{d}x,text{d}y,text{d}z,.$$
                              Let $text{d}^2Omega$ denote the solid angle element, then
                              $$I=frac13,iiint_B,r^2cdot r^2,text{d}r,text{d}^2Omega=frac13,int_1^2,r^4,text{d}r,iint_{Sigma},text{d}^2Omega,,$$
                              where $Sigma$ is the surface of the unit $2$-dimensional sphere centered at the origin. Thus,
                              $$I=frac13,left(frac{2^5-1^5}{5}right),(4pi)=frac{124pi}{15},.$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 12 '18 at 23:35









                              BatominovskiBatominovski

                              1




                              1























                                  1














                                  According to spherical coordinates system with should have




                                  • $x=rsintheta cos phi$


                                  • $y=rsin theta sin phi$


                                  • $z=rcos theta$



                                  and the set up should be sligtly different



                                  $$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$



                                  and the result is equal to $frac{pi124}{15}$.






                                  share|cite|improve this answer




























                                    1














                                    According to spherical coordinates system with should have




                                    • $x=rsintheta cos phi$


                                    • $y=rsin theta sin phi$


                                    • $z=rcos theta$



                                    and the set up should be sligtly different



                                    $$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$



                                    and the result is equal to $frac{pi124}{15}$.






                                    share|cite|improve this answer


























                                      1












                                      1








                                      1






                                      According to spherical coordinates system with should have




                                      • $x=rsintheta cos phi$


                                      • $y=rsin theta sin phi$


                                      • $z=rcos theta$



                                      and the set up should be sligtly different



                                      $$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$



                                      and the result is equal to $frac{pi124}{15}$.






                                      share|cite|improve this answer














                                      According to spherical coordinates system with should have




                                      • $x=rsintheta cos phi$


                                      • $y=rsin theta sin phi$


                                      • $z=rcos theta$



                                      and the set up should be sligtly different



                                      $$int_1^2 dr int_0^{2pi} d phi int_0^{pi} (rcos theta)^2r^2 sin theta ,dtheta$$



                                      and the result is equal to $frac{pi124}{15}$.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Dec 12 '18 at 23:57

























                                      answered Dec 12 '18 at 23:24









                                      gimusigimusi

                                      1




                                      1






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037351%2fuse-the-spherical-coordinates-to-compute-the-integral-int-limits-b-z2-dx-dy%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna