Prove that $phi_{h}(x) = frac{1}{2h}int_{x-h}^{x+h}f(t)dt in L(mathbb{R})$












0















Problem. Given $f in L(mathbb{R})$, let
$$phi_{h}(x) = frac{1}{2h}int_{x-h}^{x+h}f(t)dt,quad h>0.$$
Prove that $phi in L(mathbb{R})$ e $displaystyle int_{mathbb{R}}|phi_{h}(x)|dx leq Vert f Vert_{1}.$




My attempt.



begin{eqnarray*}
int_{mathbb{R}}|phi_{h}(x)| & leq & frac{1}{2h}int_{mathbb{R}}int_{[x-h,x+h]}|f(t)|dtdx\
& = & frac{1}{2h}underbrace{int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dtdx}_{text{Fubini-Tonelli}}\
& = & frac{1}{2h}int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dxdt\
& = & frac{1}{2h}int_{mathbb{R}}|f(t)|underbrace{m([x-h,x+h])}_{mtext{ is the Lebesgue measure}}dt\
& = & int_{mathbb{R}}|f(t)|dt\
& = & Vert f Vert_{1}
end{eqnarray*}



Is this correct?










share|cite|improve this question




















  • 2




    no. first equality should be an inequality
    – mathworker21
    Dec 10 '18 at 4:58






  • 2




    But other than that, it is correct.
    – copper.hat
    Dec 10 '18 at 5:02










  • Yes! Of course.. its a typo. Thank you
    – Lucas Corrêa
    Dec 10 '18 at 5:02
















0















Problem. Given $f in L(mathbb{R})$, let
$$phi_{h}(x) = frac{1}{2h}int_{x-h}^{x+h}f(t)dt,quad h>0.$$
Prove that $phi in L(mathbb{R})$ e $displaystyle int_{mathbb{R}}|phi_{h}(x)|dx leq Vert f Vert_{1}.$




My attempt.



begin{eqnarray*}
int_{mathbb{R}}|phi_{h}(x)| & leq & frac{1}{2h}int_{mathbb{R}}int_{[x-h,x+h]}|f(t)|dtdx\
& = & frac{1}{2h}underbrace{int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dtdx}_{text{Fubini-Tonelli}}\
& = & frac{1}{2h}int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dxdt\
& = & frac{1}{2h}int_{mathbb{R}}|f(t)|underbrace{m([x-h,x+h])}_{mtext{ is the Lebesgue measure}}dt\
& = & int_{mathbb{R}}|f(t)|dt\
& = & Vert f Vert_{1}
end{eqnarray*}



Is this correct?










share|cite|improve this question




















  • 2




    no. first equality should be an inequality
    – mathworker21
    Dec 10 '18 at 4:58






  • 2




    But other than that, it is correct.
    – copper.hat
    Dec 10 '18 at 5:02










  • Yes! Of course.. its a typo. Thank you
    – Lucas Corrêa
    Dec 10 '18 at 5:02














0












0








0








Problem. Given $f in L(mathbb{R})$, let
$$phi_{h}(x) = frac{1}{2h}int_{x-h}^{x+h}f(t)dt,quad h>0.$$
Prove that $phi in L(mathbb{R})$ e $displaystyle int_{mathbb{R}}|phi_{h}(x)|dx leq Vert f Vert_{1}.$




My attempt.



begin{eqnarray*}
int_{mathbb{R}}|phi_{h}(x)| & leq & frac{1}{2h}int_{mathbb{R}}int_{[x-h,x+h]}|f(t)|dtdx\
& = & frac{1}{2h}underbrace{int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dtdx}_{text{Fubini-Tonelli}}\
& = & frac{1}{2h}int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dxdt\
& = & frac{1}{2h}int_{mathbb{R}}|f(t)|underbrace{m([x-h,x+h])}_{mtext{ is the Lebesgue measure}}dt\
& = & int_{mathbb{R}}|f(t)|dt\
& = & Vert f Vert_{1}
end{eqnarray*}



Is this correct?










share|cite|improve this question
















Problem. Given $f in L(mathbb{R})$, let
$$phi_{h}(x) = frac{1}{2h}int_{x-h}^{x+h}f(t)dt,quad h>0.$$
Prove that $phi in L(mathbb{R})$ e $displaystyle int_{mathbb{R}}|phi_{h}(x)|dx leq Vert f Vert_{1}.$




My attempt.



begin{eqnarray*}
int_{mathbb{R}}|phi_{h}(x)| & leq & frac{1}{2h}int_{mathbb{R}}int_{[x-h,x+h]}|f(t)|dtdx\
& = & frac{1}{2h}underbrace{int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dtdx}_{text{Fubini-Tonelli}}\
& = & frac{1}{2h}int_{mathbb{R}}int_{mathbb{R}}|f(t)|chi_{[x-h,x+h]}dxdt\
& = & frac{1}{2h}int_{mathbb{R}}|f(t)|underbrace{m([x-h,x+h])}_{mtext{ is the Lebesgue measure}}dt\
& = & int_{mathbb{R}}|f(t)|dt\
& = & Vert f Vert_{1}
end{eqnarray*}



Is this correct?







measure-theory lebesgue-measure






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 5:02

























asked Dec 10 '18 at 4:57









Lucas Corrêa

1,4471321




1,4471321








  • 2




    no. first equality should be an inequality
    – mathworker21
    Dec 10 '18 at 4:58






  • 2




    But other than that, it is correct.
    – copper.hat
    Dec 10 '18 at 5:02










  • Yes! Of course.. its a typo. Thank you
    – Lucas Corrêa
    Dec 10 '18 at 5:02














  • 2




    no. first equality should be an inequality
    – mathworker21
    Dec 10 '18 at 4:58






  • 2




    But other than that, it is correct.
    – copper.hat
    Dec 10 '18 at 5:02










  • Yes! Of course.. its a typo. Thank you
    – Lucas Corrêa
    Dec 10 '18 at 5:02








2




2




no. first equality should be an inequality
– mathworker21
Dec 10 '18 at 4:58




no. first equality should be an inequality
– mathworker21
Dec 10 '18 at 4:58




2




2




But other than that, it is correct.
– copper.hat
Dec 10 '18 at 5:02




But other than that, it is correct.
– copper.hat
Dec 10 '18 at 5:02












Yes! Of course.. its a typo. Thank you
– Lucas Corrêa
Dec 10 '18 at 5:02




Yes! Of course.. its a typo. Thank you
– Lucas Corrêa
Dec 10 '18 at 5:02















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033467%2fprove-that-phi-hx-frac12h-int-x-hxhftdt-in-l-mathbbr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033467%2fprove-that-phi-hx-frac12h-int-x-hxhftdt-in-l-mathbbr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna