Proving $1 - frac{2 vartheta}{pi} sin vartheta leq cos vartheta$, for $vartheta in [0, frac{pi}{2}]$












2












$begingroup$


For my thesis I need the inequality $1 - frac{2 vartheta}{pi} sin vartheta leq 2 cos vartheta$ for $vartheta in [0, frac{pi}{2}]$ which can be proved by exploiting the fact that $cos vartheta$ is concave on $[0, frac{pi}{2}]$.



When I plotted the graph of $1 - frac{2vartheta}{pi} sin vartheta$ and the graph of $cos vartheta$ I noticed that indeed the stronger inequality
$$1 - frac{2 vartheta}{pi} sin vartheta leq cos vartheta$$ seems to hold.



Actually I do not need this stronger version but I would be interested in a proof anyway.



What I have tried:




  • Trying to find the zeros of $h(vartheta)=cos vartheta - 1 + frac{2 vartheta}{pi} sin vartheta$.

  • Writing down the Taylor-expansion of $h(vartheta)$ and comparing the positive and the negative terms.


Both approaches ended up in a mess. Does anyone have an idea on how to prove this?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    For my thesis I need the inequality $1 - frac{2 vartheta}{pi} sin vartheta leq 2 cos vartheta$ for $vartheta in [0, frac{pi}{2}]$ which can be proved by exploiting the fact that $cos vartheta$ is concave on $[0, frac{pi}{2}]$.



    When I plotted the graph of $1 - frac{2vartheta}{pi} sin vartheta$ and the graph of $cos vartheta$ I noticed that indeed the stronger inequality
    $$1 - frac{2 vartheta}{pi} sin vartheta leq cos vartheta$$ seems to hold.



    Actually I do not need this stronger version but I would be interested in a proof anyway.



    What I have tried:




    • Trying to find the zeros of $h(vartheta)=cos vartheta - 1 + frac{2 vartheta}{pi} sin vartheta$.

    • Writing down the Taylor-expansion of $h(vartheta)$ and comparing the positive and the negative terms.


    Both approaches ended up in a mess. Does anyone have an idea on how to prove this?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      For my thesis I need the inequality $1 - frac{2 vartheta}{pi} sin vartheta leq 2 cos vartheta$ for $vartheta in [0, frac{pi}{2}]$ which can be proved by exploiting the fact that $cos vartheta$ is concave on $[0, frac{pi}{2}]$.



      When I plotted the graph of $1 - frac{2vartheta}{pi} sin vartheta$ and the graph of $cos vartheta$ I noticed that indeed the stronger inequality
      $$1 - frac{2 vartheta}{pi} sin vartheta leq cos vartheta$$ seems to hold.



      Actually I do not need this stronger version but I would be interested in a proof anyway.



      What I have tried:




      • Trying to find the zeros of $h(vartheta)=cos vartheta - 1 + frac{2 vartheta}{pi} sin vartheta$.

      • Writing down the Taylor-expansion of $h(vartheta)$ and comparing the positive and the negative terms.


      Both approaches ended up in a mess. Does anyone have an idea on how to prove this?










      share|cite|improve this question











      $endgroup$




      For my thesis I need the inequality $1 - frac{2 vartheta}{pi} sin vartheta leq 2 cos vartheta$ for $vartheta in [0, frac{pi}{2}]$ which can be proved by exploiting the fact that $cos vartheta$ is concave on $[0, frac{pi}{2}]$.



      When I plotted the graph of $1 - frac{2vartheta}{pi} sin vartheta$ and the graph of $cos vartheta$ I noticed that indeed the stronger inequality
      $$1 - frac{2 vartheta}{pi} sin vartheta leq cos vartheta$$ seems to hold.



      Actually I do not need this stronger version but I would be interested in a proof anyway.



      What I have tried:




      • Trying to find the zeros of $h(vartheta)=cos vartheta - 1 + frac{2 vartheta}{pi} sin vartheta$.

      • Writing down the Taylor-expansion of $h(vartheta)$ and comparing the positive and the negative terms.


      Both approaches ended up in a mess. Does anyone have an idea on how to prove this?







      trigonometry inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 10:51









      Blue

      47.7k870151




      47.7k870151










      asked Dec 14 '18 at 10:28









      Bruno KramsBruno Krams

      476




      476






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The inequality obviously holds for $θ = 0$. For $θ in left(0, dfrac{π}{2}right]$, note thatbegin{align*}
          &mathrel{phantom{Longleftrightarrow}}{} 1 - frac{2}{π} θ sin θ leqslant cos θ\
          &Longleftrightarrow 2sin^2 frac{θ}{2} = 1 - cos θ leqslant frac{2}{π} θ sin θ = frac{4}{π} θ sinfrac{θ}{2} cosfrac{θ}{2}\
          &Longleftrightarrow frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant frac{4}{π}.
          end{align*}

          Define $f(t) = dfrac{tan t}{t}$ for $t in left(0, dfrac{π}{4}right]$, then $f'(t) = dfrac{2t - sin 2t}{2t^2 cos^2 t} geqslant 0$, which implies that$$
          frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant fleft( frac{π}{4} right) = frac{4}{π}.
          $$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
            $endgroup$
            – Bruno Krams
            Dec 14 '18 at 11:03











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039193%2fproving-1-frac2-vartheta-pi-sin-vartheta-leq-cos-vartheta-for%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          The inequality obviously holds for $θ = 0$. For $θ in left(0, dfrac{π}{2}right]$, note thatbegin{align*}
          &mathrel{phantom{Longleftrightarrow}}{} 1 - frac{2}{π} θ sin θ leqslant cos θ\
          &Longleftrightarrow 2sin^2 frac{θ}{2} = 1 - cos θ leqslant frac{2}{π} θ sin θ = frac{4}{π} θ sinfrac{θ}{2} cosfrac{θ}{2}\
          &Longleftrightarrow frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant frac{4}{π}.
          end{align*}

          Define $f(t) = dfrac{tan t}{t}$ for $t in left(0, dfrac{π}{4}right]$, then $f'(t) = dfrac{2t - sin 2t}{2t^2 cos^2 t} geqslant 0$, which implies that$$
          frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant fleft( frac{π}{4} right) = frac{4}{π}.
          $$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
            $endgroup$
            – Bruno Krams
            Dec 14 '18 at 11:03
















          3












          $begingroup$

          The inequality obviously holds for $θ = 0$. For $θ in left(0, dfrac{π}{2}right]$, note thatbegin{align*}
          &mathrel{phantom{Longleftrightarrow}}{} 1 - frac{2}{π} θ sin θ leqslant cos θ\
          &Longleftrightarrow 2sin^2 frac{θ}{2} = 1 - cos θ leqslant frac{2}{π} θ sin θ = frac{4}{π} θ sinfrac{θ}{2} cosfrac{θ}{2}\
          &Longleftrightarrow frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant frac{4}{π}.
          end{align*}

          Define $f(t) = dfrac{tan t}{t}$ for $t in left(0, dfrac{π}{4}right]$, then $f'(t) = dfrac{2t - sin 2t}{2t^2 cos^2 t} geqslant 0$, which implies that$$
          frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant fleft( frac{π}{4} right) = frac{4}{π}.
          $$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
            $endgroup$
            – Bruno Krams
            Dec 14 '18 at 11:03














          3












          3








          3





          $begingroup$

          The inequality obviously holds for $θ = 0$. For $θ in left(0, dfrac{π}{2}right]$, note thatbegin{align*}
          &mathrel{phantom{Longleftrightarrow}}{} 1 - frac{2}{π} θ sin θ leqslant cos θ\
          &Longleftrightarrow 2sin^2 frac{θ}{2} = 1 - cos θ leqslant frac{2}{π} θ sin θ = frac{4}{π} θ sinfrac{θ}{2} cosfrac{θ}{2}\
          &Longleftrightarrow frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant frac{4}{π}.
          end{align*}

          Define $f(t) = dfrac{tan t}{t}$ for $t in left(0, dfrac{π}{4}right]$, then $f'(t) = dfrac{2t - sin 2t}{2t^2 cos^2 t} geqslant 0$, which implies that$$
          frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant fleft( frac{π}{4} right) = frac{4}{π}.
          $$






          share|cite|improve this answer









          $endgroup$



          The inequality obviously holds for $θ = 0$. For $θ in left(0, dfrac{π}{2}right]$, note thatbegin{align*}
          &mathrel{phantom{Longleftrightarrow}}{} 1 - frac{2}{π} θ sin θ leqslant cos θ\
          &Longleftrightarrow 2sin^2 frac{θ}{2} = 1 - cos θ leqslant frac{2}{π} θ sin θ = frac{4}{π} θ sinfrac{θ}{2} cosfrac{θ}{2}\
          &Longleftrightarrow frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant frac{4}{π}.
          end{align*}

          Define $f(t) = dfrac{tan t}{t}$ for $t in left(0, dfrac{π}{4}right]$, then $f'(t) = dfrac{2t - sin 2t}{2t^2 cos^2 t} geqslant 0$, which implies that$$
          frac{tan dfrac{θ}{2}}{dfrac{θ}{2}} leqslant fleft( frac{π}{4} right) = frac{4}{π}.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 14 '18 at 10:45









          SaadSaad

          19.7k92352




          19.7k92352








          • 1




            $begingroup$
            Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
            $endgroup$
            – Bruno Krams
            Dec 14 '18 at 11:03














          • 1




            $begingroup$
            Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
            $endgroup$
            – Bruno Krams
            Dec 14 '18 at 11:03








          1




          1




          $begingroup$
          Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
          $endgroup$
          – Bruno Krams
          Dec 14 '18 at 11:03




          $begingroup$
          Wow. That was fast and I'm even able to follow your proof :). Thanks a lot.
          $endgroup$
          – Bruno Krams
          Dec 14 '18 at 11:03


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039193%2fproving-1-frac2-vartheta-pi-sin-vartheta-leq-cos-vartheta-for%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna