Which of the following statements about determinants are correct?
$begingroup$
Which of the following statements about determinants are correct?
$det(A^2)>0$, for all invertible matrices $A$
$det(A+A^{-1})=det(A)+dfrac{1}{det(A)}$, for all invertible matrices $A$
$det(vv^T)>0$, for all column vectors $v ≠ 0$
$det(AB^T)=det((A^T)B)$, for all square matrices $A$ and $B$
Which of the statements are correct? I do not feel secure about which of them that is true.
My answer:
My calculations have given me that $2$ and $4$ are true. Am I correct?
matrices symmetric-matrices
$endgroup$
|
show 6 more comments
$begingroup$
Which of the following statements about determinants are correct?
$det(A^2)>0$, for all invertible matrices $A$
$det(A+A^{-1})=det(A)+dfrac{1}{det(A)}$, for all invertible matrices $A$
$det(vv^T)>0$, for all column vectors $v ≠ 0$
$det(AB^T)=det((A^T)B)$, for all square matrices $A$ and $B$
Which of the statements are correct? I do not feel secure about which of them that is true.
My answer:
My calculations have given me that $2$ and $4$ are true. Am I correct?
matrices symmetric-matrices
$endgroup$
1
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
1
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00
|
show 6 more comments
$begingroup$
Which of the following statements about determinants are correct?
$det(A^2)>0$, for all invertible matrices $A$
$det(A+A^{-1})=det(A)+dfrac{1}{det(A)}$, for all invertible matrices $A$
$det(vv^T)>0$, for all column vectors $v ≠ 0$
$det(AB^T)=det((A^T)B)$, for all square matrices $A$ and $B$
Which of the statements are correct? I do not feel secure about which of them that is true.
My answer:
My calculations have given me that $2$ and $4$ are true. Am I correct?
matrices symmetric-matrices
$endgroup$
Which of the following statements about determinants are correct?
$det(A^2)>0$, for all invertible matrices $A$
$det(A+A^{-1})=det(A)+dfrac{1}{det(A)}$, for all invertible matrices $A$
$det(vv^T)>0$, for all column vectors $v ≠ 0$
$det(AB^T)=det((A^T)B)$, for all square matrices $A$ and $B$
Which of the statements are correct? I do not feel secure about which of them that is true.
My answer:
My calculations have given me that $2$ and $4$ are true. Am I correct?
matrices symmetric-matrices
matrices symmetric-matrices
edited Dec 19 '18 at 7:12
Henno Brandsma
107k347114
107k347114
asked Dec 19 '18 at 6:53
Jacob AndreassonJacob Andreasson
35
35
1
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
1
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00
|
show 6 more comments
1
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
1
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00
1
1
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
1
1
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
- $det (A^2)=det A cdot det A=(det A)^2>0$
$det (I+I)=det (2I)=2^n .det I=2^n$ whereas $det I+frac{1}{det I}=2$
$vv^T$ has rank $1$, so its eigenvalues are zero [$(n-1)$ times] and its trace and hence $det vv^T=0$
- $det (AB^T)=det A cdot det B^T=det A cdot det B=det A^T.det B=det(A^TB)$
$endgroup$
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
add a comment |
$begingroup$
For 1, use that $det(AB)= det(A)det(B)$ to find that $det(A^2) = det(A)^2 > 0$.
For 2, take $A = I $.
For 3, note that the rows of every matrix $vv^T$ are scalar multiples of $v$. Thus, the determinant will be zero for all vectors with more thant $1$ entry.
For 4, use that $det(A^T) = det(A)$, so $det(AB^T) = det((AB^T)^T) = det(BA^T) = det(A^TB)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046109%2fwhich-of-the-following-statements-about-determinants-are-correct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
- $det (A^2)=det A cdot det A=(det A)^2>0$
$det (I+I)=det (2I)=2^n .det I=2^n$ whereas $det I+frac{1}{det I}=2$
$vv^T$ has rank $1$, so its eigenvalues are zero [$(n-1)$ times] and its trace and hence $det vv^T=0$
- $det (AB^T)=det A cdot det B^T=det A cdot det B=det A^T.det B=det(A^TB)$
$endgroup$
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
add a comment |
$begingroup$
- $det (A^2)=det A cdot det A=(det A)^2>0$
$det (I+I)=det (2I)=2^n .det I=2^n$ whereas $det I+frac{1}{det I}=2$
$vv^T$ has rank $1$, so its eigenvalues are zero [$(n-1)$ times] and its trace and hence $det vv^T=0$
- $det (AB^T)=det A cdot det B^T=det A cdot det B=det A^T.det B=det(A^TB)$
$endgroup$
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
add a comment |
$begingroup$
- $det (A^2)=det A cdot det A=(det A)^2>0$
$det (I+I)=det (2I)=2^n .det I=2^n$ whereas $det I+frac{1}{det I}=2$
$vv^T$ has rank $1$, so its eigenvalues are zero [$(n-1)$ times] and its trace and hence $det vv^T=0$
- $det (AB^T)=det A cdot det B^T=det A cdot det B=det A^T.det B=det(A^TB)$
$endgroup$
- $det (A^2)=det A cdot det A=(det A)^2>0$
$det (I+I)=det (2I)=2^n .det I=2^n$ whereas $det I+frac{1}{det I}=2$
$vv^T$ has rank $1$, so its eigenvalues are zero [$(n-1)$ times] and its trace and hence $det vv^T=0$
- $det (AB^T)=det A cdot det B^T=det A cdot det B=det A^T.det B=det(A^TB)$
edited Dec 19 '18 at 7:32
answered Dec 19 '18 at 7:25
Chinnapparaj RChinnapparaj R
5,3841828
5,3841828
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
add a comment |
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
so the only one that is true is 4?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:27
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
it is A*B$^T$ not (AB)$^T$
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:30
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
see my answer again. use $det A=det A^T$
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:33
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
1 and 4 is true then?
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
$begingroup$
yes...................
$endgroup$
– Chinnapparaj R
Dec 19 '18 at 7:36
add a comment |
$begingroup$
For 1, use that $det(AB)= det(A)det(B)$ to find that $det(A^2) = det(A)^2 > 0$.
For 2, take $A = I $.
For 3, note that the rows of every matrix $vv^T$ are scalar multiples of $v$. Thus, the determinant will be zero for all vectors with more thant $1$ entry.
For 4, use that $det(A^T) = det(A)$, so $det(AB^T) = det((AB^T)^T) = det(BA^T) = det(A^TB)$.
$endgroup$
add a comment |
$begingroup$
For 1, use that $det(AB)= det(A)det(B)$ to find that $det(A^2) = det(A)^2 > 0$.
For 2, take $A = I $.
For 3, note that the rows of every matrix $vv^T$ are scalar multiples of $v$. Thus, the determinant will be zero for all vectors with more thant $1$ entry.
For 4, use that $det(A^T) = det(A)$, so $det(AB^T) = det((AB^T)^T) = det(BA^T) = det(A^TB)$.
$endgroup$
add a comment |
$begingroup$
For 1, use that $det(AB)= det(A)det(B)$ to find that $det(A^2) = det(A)^2 > 0$.
For 2, take $A = I $.
For 3, note that the rows of every matrix $vv^T$ are scalar multiples of $v$. Thus, the determinant will be zero for all vectors with more thant $1$ entry.
For 4, use that $det(A^T) = det(A)$, so $det(AB^T) = det((AB^T)^T) = det(BA^T) = det(A^TB)$.
$endgroup$
For 1, use that $det(AB)= det(A)det(B)$ to find that $det(A^2) = det(A)^2 > 0$.
For 2, take $A = I $.
For 3, note that the rows of every matrix $vv^T$ are scalar multiples of $v$. Thus, the determinant will be zero for all vectors with more thant $1$ entry.
For 4, use that $det(A^T) = det(A)$, so $det(AB^T) = det((AB^T)^T) = det(BA^T) = det(A^TB)$.
answered Dec 19 '18 at 7:31
Anthony TerAnthony Ter
2266
2266
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046109%2fwhich-of-the-following-statements-about-determinants-are-correct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
kindly edit your post to include your attempts using mathjax.
$endgroup$
– Siong Thye Goh
Dec 19 '18 at 6:54
$begingroup$
Okey. Sorry I forgot
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 6:55
$begingroup$
What do you know about determinants?
$endgroup$
– bubba
Dec 19 '18 at 6:58
1
$begingroup$
Do you know, for example, that $det(AB) = det(A)cdotdet(B)$ ?
$endgroup$
– bubba
Dec 19 '18 at 6:59
$begingroup$
Sorry I have calculate totally wrong
$endgroup$
– Jacob Andreasson
Dec 19 '18 at 7:00