How to check the uniqueness of an ODE ,when the function in the R.H.S of the ODE is not Locally lipschitz












2












$begingroup$


Let $$dot X=f(X)$$ $$X(0)=X_0$$ be an ODE. If $f$ is locally Lipschitz, then the uniqueness of the solution of the ODE is guaranteed. How to check the uniqueness if $f$ is not Locally Lipschitz? For example if $Xin mathbb R$ and $f(X)=3X^{(frac{2}{3})}$ and $X_0=0$ then the two solutions of the ODE is $$X(t)=t^3$$ and$$X(0)=0$$ but if we replace the initial condition by $X_0=1$then it seems to me the only solution is $$X(t)=(t+1)^3$$ Now how to check wheather there are others solution or not?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
    $endgroup$
    – Jacky Chong
    Dec 19 '18 at 8:49










  • $begingroup$
    There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
    $endgroup$
    – user539887
    Dec 19 '18 at 8:54










  • $begingroup$
    Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
    $endgroup$
    – Samiron Parui
    Dec 22 '18 at 6:46
















2












$begingroup$


Let $$dot X=f(X)$$ $$X(0)=X_0$$ be an ODE. If $f$ is locally Lipschitz, then the uniqueness of the solution of the ODE is guaranteed. How to check the uniqueness if $f$ is not Locally Lipschitz? For example if $Xin mathbb R$ and $f(X)=3X^{(frac{2}{3})}$ and $X_0=0$ then the two solutions of the ODE is $$X(t)=t^3$$ and$$X(0)=0$$ but if we replace the initial condition by $X_0=1$then it seems to me the only solution is $$X(t)=(t+1)^3$$ Now how to check wheather there are others solution or not?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
    $endgroup$
    – Jacky Chong
    Dec 19 '18 at 8:49










  • $begingroup$
    There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
    $endgroup$
    – user539887
    Dec 19 '18 at 8:54










  • $begingroup$
    Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
    $endgroup$
    – Samiron Parui
    Dec 22 '18 at 6:46














2












2








2





$begingroup$


Let $$dot X=f(X)$$ $$X(0)=X_0$$ be an ODE. If $f$ is locally Lipschitz, then the uniqueness of the solution of the ODE is guaranteed. How to check the uniqueness if $f$ is not Locally Lipschitz? For example if $Xin mathbb R$ and $f(X)=3X^{(frac{2}{3})}$ and $X_0=0$ then the two solutions of the ODE is $$X(t)=t^3$$ and$$X(0)=0$$ but if we replace the initial condition by $X_0=1$then it seems to me the only solution is $$X(t)=(t+1)^3$$ Now how to check wheather there are others solution or not?










share|cite|improve this question









$endgroup$




Let $$dot X=f(X)$$ $$X(0)=X_0$$ be an ODE. If $f$ is locally Lipschitz, then the uniqueness of the solution of the ODE is guaranteed. How to check the uniqueness if $f$ is not Locally Lipschitz? For example if $Xin mathbb R$ and $f(X)=3X^{(frac{2}{3})}$ and $X_0=0$ then the two solutions of the ODE is $$X(t)=t^3$$ and$$X(0)=0$$ but if we replace the initial condition by $X_0=1$then it seems to me the only solution is $$X(t)=(t+1)^3$$ Now how to check wheather there are others solution or not?







ordinary-differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 19 '18 at 8:40









Samiron ParuiSamiron Parui

1808




1808








  • 1




    $begingroup$
    When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
    $endgroup$
    – Jacky Chong
    Dec 19 '18 at 8:49










  • $begingroup$
    There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
    $endgroup$
    – user539887
    Dec 19 '18 at 8:54










  • $begingroup$
    Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
    $endgroup$
    – Samiron Parui
    Dec 22 '18 at 6:46














  • 1




    $begingroup$
    When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
    $endgroup$
    – Jacky Chong
    Dec 19 '18 at 8:49










  • $begingroup$
    There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
    $endgroup$
    – user539887
    Dec 19 '18 at 8:54










  • $begingroup$
    Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
    $endgroup$
    – Samiron Parui
    Dec 22 '18 at 6:46








1




1




$begingroup$
When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
$endgroup$
– Jacky Chong
Dec 19 '18 at 8:49




$begingroup$
When you consider $(-varepsilon, varepsilon)times (1-delta, 1+delta)$ then $f(X) = 3X^{2/3}$ is Lipschitz.
$endgroup$
– Jacky Chong
Dec 19 '18 at 8:49












$begingroup$
There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
$endgroup$
– user539887
Dec 19 '18 at 8:54




$begingroup$
There are more solutions, in fact uncountably many. Indeed, for $a>1$ the function $X(t)=(t+a)^3$ for $tin(-infty,-a)$, $X(t)=0$ for $tin[-a,-1]$ and $X(t)=(t+1)^3$ for $tin(-1,infty)$ satisfies the IVP. Further, $X(t)=0$ for $tin(-infty,-1]$, $X(t)=(t+1)^3$ satisfies the IVP, too.
$endgroup$
– user539887
Dec 19 '18 at 8:54












$begingroup$
Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
$endgroup$
– Samiron Parui
Dec 22 '18 at 6:46




$begingroup$
Now is there any guarantee that if f is not locally Lipschitz, then there exists more than one solution of the IVP?
$endgroup$
– Samiron Parui
Dec 22 '18 at 6:46










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046172%2fhow-to-check-the-uniqueness-of-an-ode-when-the-function-in-the-r-h-s-of-the-ode%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046172%2fhow-to-check-the-uniqueness-of-an-ode-when-the-function-in-the-r-h-s-of-the-ode%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna