How to prove $H(H^{-1}(v)*p)$ is convex in $v$ for every $pin [0,1]$
$begingroup$
In the proof of Mrs Gerber's lemma, there is a key step to prove $H(H^{-1}(v)*p)$ is convex in $v$ for every $pin [0,1]$.I don't konw how to prove it.
information-theory
$endgroup$
add a comment |
$begingroup$
In the proof of Mrs Gerber's lemma, there is a key step to prove $H(H^{-1}(v)*p)$ is convex in $v$ for every $pin [0,1]$.I don't konw how to prove it.
information-theory
$endgroup$
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25
add a comment |
$begingroup$
In the proof of Mrs Gerber's lemma, there is a key step to prove $H(H^{-1}(v)*p)$ is convex in $v$ for every $pin [0,1]$.I don't konw how to prove it.
information-theory
$endgroup$
In the proof of Mrs Gerber's lemma, there is a key step to prove $H(H^{-1}(v)*p)$ is convex in $v$ for every $pin [0,1]$.I don't konw how to prove it.
information-theory
information-theory
asked Jul 9 '18 at 3:16
DuWeiminDuWeimin
62
62
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25
add a comment |
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$
H^{-1}(rtimesnu_1+(1-r)timesnu_2) leq r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2) (1) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq (r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p (2) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p (3) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq H(r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p) (4) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq r times H(H^{-1}(nu_1) * p)+(1-r) times H(H^{-1}(nu_2)* p) (5)
$$
assume that $p$ is smaller than $1/2$. Similar derivations can be obtained for $p>1/2$.
(1) is derived because $H^{-1}(nu)$ is a convex function of $nu$,
(2) is derived because $u*p$ is a decreasing function of $u$ if $p<1/2$,
(3) is derived because $(r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p= r times H^{-1}(nu_1)*p+(1-
r) times H^{-1}(nu_2))*p$
(4) (tricky) is derived because it can be obtained that both sides of (3) are greater than $1/2$, and $H(x)$ is a decreasing function of $x$ if $x$ is greater than $1/2$.
(5) is obtained because $H(x)$ is a concave function of $x$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2845173%2fhow-to-prove-hh-1vp-is-convex-in-v-for-every-p-in-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
H^{-1}(rtimesnu_1+(1-r)timesnu_2) leq r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2) (1) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq (r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p (2) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p (3) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq H(r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p) (4) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq r times H(H^{-1}(nu_1) * p)+(1-r) times H(H^{-1}(nu_2)* p) (5)
$$
assume that $p$ is smaller than $1/2$. Similar derivations can be obtained for $p>1/2$.
(1) is derived because $H^{-1}(nu)$ is a convex function of $nu$,
(2) is derived because $u*p$ is a decreasing function of $u$ if $p<1/2$,
(3) is derived because $(r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p= r times H^{-1}(nu_1)*p+(1-
r) times H^{-1}(nu_2))*p$
(4) (tricky) is derived because it can be obtained that both sides of (3) are greater than $1/2$, and $H(x)$ is a decreasing function of $x$ if $x$ is greater than $1/2$.
(5) is obtained because $H(x)$ is a concave function of $x$.
$endgroup$
add a comment |
$begingroup$
$$
H^{-1}(rtimesnu_1+(1-r)timesnu_2) leq r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2) (1) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq (r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p (2) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p (3) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq H(r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p) (4) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq r times H(H^{-1}(nu_1) * p)+(1-r) times H(H^{-1}(nu_2)* p) (5)
$$
assume that $p$ is smaller than $1/2$. Similar derivations can be obtained for $p>1/2$.
(1) is derived because $H^{-1}(nu)$ is a convex function of $nu$,
(2) is derived because $u*p$ is a decreasing function of $u$ if $p<1/2$,
(3) is derived because $(r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p= r times H^{-1}(nu_1)*p+(1-
r) times H^{-1}(nu_2))*p$
(4) (tricky) is derived because it can be obtained that both sides of (3) are greater than $1/2$, and $H(x)$ is a decreasing function of $x$ if $x$ is greater than $1/2$.
(5) is obtained because $H(x)$ is a concave function of $x$.
$endgroup$
add a comment |
$begingroup$
$$
H^{-1}(rtimesnu_1+(1-r)timesnu_2) leq r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2) (1) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq (r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p (2) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p (3) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq H(r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p) (4) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq r times H(H^{-1}(nu_1) * p)+(1-r) times H(H^{-1}(nu_2)* p) (5)
$$
assume that $p$ is smaller than $1/2$. Similar derivations can be obtained for $p>1/2$.
(1) is derived because $H^{-1}(nu)$ is a convex function of $nu$,
(2) is derived because $u*p$ is a decreasing function of $u$ if $p<1/2$,
(3) is derived because $(r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p= r times H^{-1}(nu_1)*p+(1-
r) times H^{-1}(nu_2))*p$
(4) (tricky) is derived because it can be obtained that both sides of (3) are greater than $1/2$, and $H(x)$ is a decreasing function of $x$ if $x$ is greater than $1/2$.
(5) is obtained because $H(x)$ is a concave function of $x$.
$endgroup$
$$
H^{-1}(rtimesnu_1+(1-r)timesnu_2) leq r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2) (1) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq (r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p (2) \
H^{-1}(r times nu_1+(1-r) times nu_2)*p geq r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p (3) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq H(r times H^{-1}(nu_1) * p+(1-r) times H^{-1}(nu_2)) * p) (4) \
H(H^{-1}(r times nu_1+(1-r) times nu_2)*p) leq r times H(H^{-1}(nu_1) * p)+(1-r) times H(H^{-1}(nu_2)* p) (5)
$$
assume that $p$ is smaller than $1/2$. Similar derivations can be obtained for $p>1/2$.
(1) is derived because $H^{-1}(nu)$ is a convex function of $nu$,
(2) is derived because $u*p$ is a decreasing function of $u$ if $p<1/2$,
(3) is derived because $(r times H^{-1}(nu_1)+(1-r) times H^{-1}(nu_2)) * p= r times H^{-1}(nu_1)*p+(1-
r) times H^{-1}(nu_2))*p$
(4) (tricky) is derived because it can be obtained that both sides of (3) are greater than $1/2$, and $H(x)$ is a decreasing function of $x$ if $x$ is greater than $1/2$.
(5) is obtained because $H(x)$ is a concave function of $x$.
edited Dec 19 '18 at 15:08
answered Dec 19 '18 at 7:30
HaytanHaytan
12
12
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2845173%2fhow-to-prove-hh-1vp-is-convex-in-v-for-every-p-in-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is Mrs. Gerber's lemma?
$endgroup$
– copper.hat
Jul 9 '18 at 4:18
$begingroup$
see ita.ucsd.edu/wiki/index.php?title=Mrs._Gerbers_Lemma for a statement of Mrs Gerber's lemma.
$endgroup$
– kimchi lover
Jul 9 '18 at 7:25