Solve the diophantine equation $x+x^3=5y^2$
$begingroup$
Solve the diophantine equation $$x+x^3=5y^2$$
I know the solution $x=0$ and $y=0$, but I can't find any other solutions. If there are no other solutions, how can I prove it?
number-theory elementary-number-theory polynomials modular-arithmetic diophantine-equations
$endgroup$
add a comment |
$begingroup$
Solve the diophantine equation $$x+x^3=5y^2$$
I know the solution $x=0$ and $y=0$, but I can't find any other solutions. If there are no other solutions, how can I prove it?
number-theory elementary-number-theory polynomials modular-arithmetic diophantine-equations
$endgroup$
add a comment |
$begingroup$
Solve the diophantine equation $$x+x^3=5y^2$$
I know the solution $x=0$ and $y=0$, but I can't find any other solutions. If there are no other solutions, how can I prove it?
number-theory elementary-number-theory polynomials modular-arithmetic diophantine-equations
$endgroup$
Solve the diophantine equation $$x+x^3=5y^2$$
I know the solution $x=0$ and $y=0$, but I can't find any other solutions. If there are no other solutions, how can I prove it?
number-theory elementary-number-theory polynomials modular-arithmetic diophantine-equations
number-theory elementary-number-theory polynomials modular-arithmetic diophantine-equations
edited Dec 19 '18 at 11:25
greedoid
39.9k114798
39.9k114798
asked Dec 19 '18 at 7:50
aggisanderaggisander
363
363
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $gcd(x,1+x^2) = 1$ and we have $$x(1+x^2) = 5y^2$$ we can say:
- case I $$x= 5a^2 ;;;{rm and};;; 1+x^2 = b^2$$
- case II $$x= a^2 ;;;{rm and};;; 1+x^2 = 5b^2$$
where $a,b$ are relatively prime.
In first case we get: $(b-x)(b+x)=1$ so
$b-x=b+x = 1$ or $-1$ and thus $x=0$ and $y=0$.
In second case we get $$1+a^4 equiv 0pmod 5$$ which is impossibile by Fermat little theorem.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046141%2fsolve-the-diophantine-equation-xx3-5y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $gcd(x,1+x^2) = 1$ and we have $$x(1+x^2) = 5y^2$$ we can say:
- case I $$x= 5a^2 ;;;{rm and};;; 1+x^2 = b^2$$
- case II $$x= a^2 ;;;{rm and};;; 1+x^2 = 5b^2$$
where $a,b$ are relatively prime.
In first case we get: $(b-x)(b+x)=1$ so
$b-x=b+x = 1$ or $-1$ and thus $x=0$ and $y=0$.
In second case we get $$1+a^4 equiv 0pmod 5$$ which is impossibile by Fermat little theorem.
$endgroup$
add a comment |
$begingroup$
Since $gcd(x,1+x^2) = 1$ and we have $$x(1+x^2) = 5y^2$$ we can say:
- case I $$x= 5a^2 ;;;{rm and};;; 1+x^2 = b^2$$
- case II $$x= a^2 ;;;{rm and};;; 1+x^2 = 5b^2$$
where $a,b$ are relatively prime.
In first case we get: $(b-x)(b+x)=1$ so
$b-x=b+x = 1$ or $-1$ and thus $x=0$ and $y=0$.
In second case we get $$1+a^4 equiv 0pmod 5$$ which is impossibile by Fermat little theorem.
$endgroup$
add a comment |
$begingroup$
Since $gcd(x,1+x^2) = 1$ and we have $$x(1+x^2) = 5y^2$$ we can say:
- case I $$x= 5a^2 ;;;{rm and};;; 1+x^2 = b^2$$
- case II $$x= a^2 ;;;{rm and};;; 1+x^2 = 5b^2$$
where $a,b$ are relatively prime.
In first case we get: $(b-x)(b+x)=1$ so
$b-x=b+x = 1$ or $-1$ and thus $x=0$ and $y=0$.
In second case we get $$1+a^4 equiv 0pmod 5$$ which is impossibile by Fermat little theorem.
$endgroup$
Since $gcd(x,1+x^2) = 1$ and we have $$x(1+x^2) = 5y^2$$ we can say:
- case I $$x= 5a^2 ;;;{rm and};;; 1+x^2 = b^2$$
- case II $$x= a^2 ;;;{rm and};;; 1+x^2 = 5b^2$$
where $a,b$ are relatively prime.
In first case we get: $(b-x)(b+x)=1$ so
$b-x=b+x = 1$ or $-1$ and thus $x=0$ and $y=0$.
In second case we get $$1+a^4 equiv 0pmod 5$$ which is impossibile by Fermat little theorem.
edited Dec 19 '18 at 8:43
answered Dec 19 '18 at 7:57
greedoidgreedoid
39.9k114798
39.9k114798
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046141%2fsolve-the-diophantine-equation-xx3-5y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown