Functional Derivative for Specific Question












1












$begingroup$


Can you help me understanding how author got to equation 1.12, and what is phi(X)function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$



$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$

$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
    $endgroup$
    – KReiser
    Dec 25 '18 at 7:17










  • $begingroup$
    Thanks for the information.
    $endgroup$
    – SAK
    Dec 25 '18 at 7:32
















1












$begingroup$


Can you help me understanding how author got to equation 1.12, and what is phi(X)function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$



$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$

$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
    $endgroup$
    – KReiser
    Dec 25 '18 at 7:17










  • $begingroup$
    Thanks for the information.
    $endgroup$
    – SAK
    Dec 25 '18 at 7:32














1












1








1





$begingroup$


Can you help me understanding how author got to equation 1.12, and what is phi(X)function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$



$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$

$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$










share|cite|improve this question











$endgroup$




Can you help me understanding how author got to equation 1.12, and what is phi(X)function. (https://i.stack.imgur.com/16LOQ.jpg)
$$J[f] = int [f(y)]^p phi{(y)} d{y}$$



$$frac{delta{J[f]}}{delta{f(x)}} = lim_{epsilonto0}frac{[int [f(y) + epsilondelta{(y-x)}]^p phi{(y)}d{y} - int[f(y)]^p phi{(y)}dy ]}{epsilon}
$$

$$frac{delta{J[f]}}{delta{f(x)}} = p[f(x)]^{p-1} phi(x) spacespacespace (1.12)$$







functional-analysis quantum-field-theory functional-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 7:32







SAK

















asked Dec 25 '18 at 7:14









SAKSAK

83




83








  • 1




    $begingroup$
    It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
    $endgroup$
    – KReiser
    Dec 25 '18 at 7:17










  • $begingroup$
    Thanks for the information.
    $endgroup$
    – SAK
    Dec 25 '18 at 7:32














  • 1




    $begingroup$
    It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
    $endgroup$
    – KReiser
    Dec 25 '18 at 7:17










  • $begingroup$
    Thanks for the information.
    $endgroup$
    – SAK
    Dec 25 '18 at 7:32








1




1




$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17




$begingroup$
It is customary on Math.Stackexchange to make questions as self-contained as possible. Please write the equations in the body of your question using MathJax.
$endgroup$
– KReiser
Dec 25 '18 at 7:17












$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32




$begingroup$
Thanks for the information.
$endgroup$
– SAK
Dec 25 '18 at 7:32










1 Answer
1






active

oldest

votes


















0












$begingroup$

Use the generalized binomial theorem:begin{align}
frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
&= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
&= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
&= p[f(x)]^{p-1}phi(x)
end{align}



$phi$ is just an arbitrary function used to define the functional $J$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051914%2ffunctional-derivative-for-specific-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Use the generalized binomial theorem:begin{align}
    frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
    &= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
    &= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
    &= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
    &= p[f(x)]^{p-1}phi(x)
    end{align}



    $phi$ is just an arbitrary function used to define the functional $J$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Use the generalized binomial theorem:begin{align}
      frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
      &= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
      &= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
      &= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
      &= p[f(x)]^{p-1}phi(x)
      end{align}



      $phi$ is just an arbitrary function used to define the functional $J$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Use the generalized binomial theorem:begin{align}
        frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
        &= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
        &= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
        &= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
        &= p[f(x)]^{p-1}phi(x)
        end{align}



        $phi$ is just an arbitrary function used to define the functional $J$.






        share|cite|improve this answer









        $endgroup$



        Use the generalized binomial theorem:begin{align}
        frac{delta{J[f]}}{delta{f(x)}} &= lim_{epsilonto0}frac1varepsilonleft(int [f(y) + epsilondelta{(y-x)}]^p phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
        &= lim_{epsilonto0}frac1varepsilonleft(int sum_{k=0}^infty{p choose k} [varepsilon delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dy - int[f(y)]^p phi{(y)},dyright)\
        &= lim_{epsilonto0}left[pint delta(y-x)[f(y)]^{p-1}phi(y),dy + sum_{k=2}^infty{p choose k} varepsilon^{k-1} int [delta(y-x)]^k [f(y)]^{p-k} phi{(y)},dyright]\
        &= pint delta(y-x)[f(y)]^{p-1}phi(y),dy\
        &= p[f(x)]^{p-1}phi(x)
        end{align}



        $phi$ is just an arbitrary function used to define the functional $J$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 25 '18 at 12:05









        mechanodroidmechanodroid

        27.5k62447




        27.5k62447






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051914%2ffunctional-derivative-for-specific-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna