Verifying an inner product












0












$begingroup$


Let $E$ be the linear space of all continuous complex-valued functions defined on the interval $(a,b)$ of the real line. Consider the inner product in $E$



$langle f,g rangle = int_a^{b} f(x) overline {g(x)} dx$



Answer



Linearity in the first argument is easy



Now,
$langle f,f rangle = int_a^b f(x) overline{f(x)} dx = int_a^b f(x)^2 dx geq 0$ by Chebyshev inequality.



let $f(x)=0$ then $int_a^b 0 dx =0= langle f,f rangle =0$



let $langle f,f rangle =0 implies int_a^b f(x)^2 dx =0 implies f(x)=0$ a.e on $(a,b)$ thus



$langle f(x),f(x) rangle=0 iff f(x)=0$.



For the conjugate symmetry,



$langle f,g rangle = int_a^b f overline g dx = int_a^b overline{overline f} overline g dx = int_a^b overline g overline{overline f} dx = int_a^b overline{g overline{f}} dx$=$overline{langle g,f rangle}$










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $E$ be the linear space of all continuous complex-valued functions defined on the interval $(a,b)$ of the real line. Consider the inner product in $E$



    $langle f,g rangle = int_a^{b} f(x) overline {g(x)} dx$



    Answer



    Linearity in the first argument is easy



    Now,
    $langle f,f rangle = int_a^b f(x) overline{f(x)} dx = int_a^b f(x)^2 dx geq 0$ by Chebyshev inequality.



    let $f(x)=0$ then $int_a^b 0 dx =0= langle f,f rangle =0$



    let $langle f,f rangle =0 implies int_a^b f(x)^2 dx =0 implies f(x)=0$ a.e on $(a,b)$ thus



    $langle f(x),f(x) rangle=0 iff f(x)=0$.



    For the conjugate symmetry,



    $langle f,g rangle = int_a^b f overline g dx = int_a^b overline{overline f} overline g dx = int_a^b overline g overline{overline f} dx = int_a^b overline{g overline{f}} dx$=$overline{langle g,f rangle}$










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $E$ be the linear space of all continuous complex-valued functions defined on the interval $(a,b)$ of the real line. Consider the inner product in $E$



      $langle f,g rangle = int_a^{b} f(x) overline {g(x)} dx$



      Answer



      Linearity in the first argument is easy



      Now,
      $langle f,f rangle = int_a^b f(x) overline{f(x)} dx = int_a^b f(x)^2 dx geq 0$ by Chebyshev inequality.



      let $f(x)=0$ then $int_a^b 0 dx =0= langle f,f rangle =0$



      let $langle f,f rangle =0 implies int_a^b f(x)^2 dx =0 implies f(x)=0$ a.e on $(a,b)$ thus



      $langle f(x),f(x) rangle=0 iff f(x)=0$.



      For the conjugate symmetry,



      $langle f,g rangle = int_a^b f overline g dx = int_a^b overline{overline f} overline g dx = int_a^b overline g overline{overline f} dx = int_a^b overline{g overline{f}} dx$=$overline{langle g,f rangle}$










      share|cite|improve this question









      $endgroup$




      Let $E$ be the linear space of all continuous complex-valued functions defined on the interval $(a,b)$ of the real line. Consider the inner product in $E$



      $langle f,g rangle = int_a^{b} f(x) overline {g(x)} dx$



      Answer



      Linearity in the first argument is easy



      Now,
      $langle f,f rangle = int_a^b f(x) overline{f(x)} dx = int_a^b f(x)^2 dx geq 0$ by Chebyshev inequality.



      let $f(x)=0$ then $int_a^b 0 dx =0= langle f,f rangle =0$



      let $langle f,f rangle =0 implies int_a^b f(x)^2 dx =0 implies f(x)=0$ a.e on $(a,b)$ thus



      $langle f(x),f(x) rangle=0 iff f(x)=0$.



      For the conjugate symmetry,



      $langle f,g rangle = int_a^b f overline g dx = int_a^b overline{overline f} overline g dx = int_a^b overline g overline{overline f} dx = int_a^b overline{g overline{f}} dx$=$overline{langle g,f rangle}$







      functional-analysis proof-verification proof-writing inner-product-space






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 25 '18 at 6:38









      Dreamer123Dreamer123

      32329




      32329






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The only mistake is in writing $zoverline {z}=z^{2}$ and $z^{2}geq 0$. For a complex number $z$ we have $zoverline {z}=|z|^{2} geq0$. ($z^{2} geq 0$ is not true but $|z|^{2} geq 0)$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051895%2fverifying-an-inner-product%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The only mistake is in writing $zoverline {z}=z^{2}$ and $z^{2}geq 0$. For a complex number $z$ we have $zoverline {z}=|z|^{2} geq0$. ($z^{2} geq 0$ is not true but $|z|^{2} geq 0)$.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              The only mistake is in writing $zoverline {z}=z^{2}$ and $z^{2}geq 0$. For a complex number $z$ we have $zoverline {z}=|z|^{2} geq0$. ($z^{2} geq 0$ is not true but $|z|^{2} geq 0)$.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                The only mistake is in writing $zoverline {z}=z^{2}$ and $z^{2}geq 0$. For a complex number $z$ we have $zoverline {z}=|z|^{2} geq0$. ($z^{2} geq 0$ is not true but $|z|^{2} geq 0)$.






                share|cite|improve this answer











                $endgroup$



                The only mistake is in writing $zoverline {z}=z^{2}$ and $z^{2}geq 0$. For a complex number $z$ we have $zoverline {z}=|z|^{2} geq0$. ($z^{2} geq 0$ is not true but $|z|^{2} geq 0)$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 25 '18 at 7:30

























                answered Dec 25 '18 at 6:43









                Kavi Rama MurthyKavi Rama Murthy

                59.2k42161




                59.2k42161






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051895%2fverifying-an-inner-product%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna