Evaluating $int_0^2(tan^{-1}(pi x)-tan^{-1} x),mathrm{d}x$
$begingroup$
Hint given: Write the integrand as an integral.
I'm supposed to do this as double integration.
My attempt:
$$int_0^2 [tan^{-1}y]^{pi x}_{x}$$
$$= int_0^2 int_x^{pi x} frac { mathrm{d}y mathrm{d}x} {y^2+1}$$
$$= int_2^{2pi} int_{frac{y}{pi}}^2 frac { mathrm{d}x mathrm{d}y} {y^2+1}$$
$$= int_2^{2pi} frac { [x]^2_{frac{y}{pi}} mathrm{d}y } { y^2+1}$$
$$= int_2^{2pi} frac { 2- {frac{y}{pi}} mathrm{d}y } { y^2+1}$$
Carrying out this integration, I got, $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]$$
But I'm supposed to get $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]+ [frac {pi-1}{2 pi}] ln 5$$
Can someone please explain where I'm wrong? I've failed to pinpoint my mistake. Thank you.
integration
$endgroup$
add a comment |
$begingroup$
Hint given: Write the integrand as an integral.
I'm supposed to do this as double integration.
My attempt:
$$int_0^2 [tan^{-1}y]^{pi x}_{x}$$
$$= int_0^2 int_x^{pi x} frac { mathrm{d}y mathrm{d}x} {y^2+1}$$
$$= int_2^{2pi} int_{frac{y}{pi}}^2 frac { mathrm{d}x mathrm{d}y} {y^2+1}$$
$$= int_2^{2pi} frac { [x]^2_{frac{y}{pi}} mathrm{d}y } { y^2+1}$$
$$= int_2^{2pi} frac { 2- {frac{y}{pi}} mathrm{d}y } { y^2+1}$$
Carrying out this integration, I got, $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]$$
But I'm supposed to get $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]+ [frac {pi-1}{2 pi}] ln 5$$
Can someone please explain where I'm wrong? I've failed to pinpoint my mistake. Thank you.
integration
$endgroup$
2
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57
add a comment |
$begingroup$
Hint given: Write the integrand as an integral.
I'm supposed to do this as double integration.
My attempt:
$$int_0^2 [tan^{-1}y]^{pi x}_{x}$$
$$= int_0^2 int_x^{pi x} frac { mathrm{d}y mathrm{d}x} {y^2+1}$$
$$= int_2^{2pi} int_{frac{y}{pi}}^2 frac { mathrm{d}x mathrm{d}y} {y^2+1}$$
$$= int_2^{2pi} frac { [x]^2_{frac{y}{pi}} mathrm{d}y } { y^2+1}$$
$$= int_2^{2pi} frac { 2- {frac{y}{pi}} mathrm{d}y } { y^2+1}$$
Carrying out this integration, I got, $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]$$
But I'm supposed to get $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]+ [frac {pi-1}{2 pi}] ln 5$$
Can someone please explain where I'm wrong? I've failed to pinpoint my mistake. Thank you.
integration
$endgroup$
Hint given: Write the integrand as an integral.
I'm supposed to do this as double integration.
My attempt:
$$int_0^2 [tan^{-1}y]^{pi x}_{x}$$
$$= int_0^2 int_x^{pi x} frac { mathrm{d}y mathrm{d}x} {y^2+1}$$
$$= int_2^{2pi} int_{frac{y}{pi}}^2 frac { mathrm{d}x mathrm{d}y} {y^2+1}$$
$$= int_2^{2pi} frac { [x]^2_{frac{y}{pi}} mathrm{d}y } { y^2+1}$$
$$= int_2^{2pi} frac { 2- {frac{y}{pi}} mathrm{d}y } { y^2+1}$$
Carrying out this integration, I got, $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]$$
But I'm supposed to get $$2[tan^{-1} 2 pi - tan^{-1} 2] - frac {1}{2 pi} [ln frac {1+4 {pi}^2} {5}]+ [frac {pi-1}{2 pi}] ln 5$$
Can someone please explain where I'm wrong? I've failed to pinpoint my mistake. Thank you.
integration
integration
edited Dec 25 '18 at 5:26
Saad
19.7k92352
19.7k92352
asked Nov 4 '14 at 6:00
DiyaDiya
1,2862925
1,2862925
2
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57
add a comment |
2
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57
2
2
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Use the change of variables $y = xt.$
$$I = int_0^2 int_x^{pi x} frac { mathrm{d}y , mathrm{d}x} {y^2+1}\=int_0^2 int_1^{pi } frac { x} {x^2t^2+1}mathrm{d}t , mathrm{d}x\=int_1^{pi} int_0^{2 } frac { x} {x^2t^2+1}mathrm{d}x , mathrm{d}t\=int_1^{pi} frac{ln(1+4t^2)}{2t^2} mathrm{d}t$$
Now use integration by parts.
$$I = -left.frac{ln(1+4t^2)}{2t}right|_1^{pi}+4int_1^{pi}frac1{1+4t^2} , dt$$
$endgroup$
add a comment |
$begingroup$
A more straight forward approach uses integration by parts.
Define:
begin{align}
& I(c)=int_{a}^{b}dx(1 times arctan{c x})=int_{ac}^{bc}frac{dy}{c} (1 timesarctan{ y})=\&frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}int_{ac}^{bc}frac{y}{1+y^2}
end{align}
using partial fraction this reads:
begin{align}
I(c)=frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}log(1+y^2)|_{ac}^{bc}
end{align}
taking $I(pi)-I(0)$ with $a=0$ and $b=2$ we are done
$endgroup$
add a comment |
$begingroup$
For the sake of an alternative approach, recall the formula for the integral of an inverse function
$$int f^{-1}(x)mathrm{d}x=xf^{-1}(x)-Fcirc f^{-1}(x)$$
Where $F'(x)=f(x)$. Plugging in $f(x)=tan(x)$,
$$I=intarctan(x)mathrm{d}x=xarctan(x)-int_0^{arctan(x)}tan(t)mathrm{d}t$$
Then recall that $$(-log|cos(x)|)'=tan(x)$$
So we have
$$I=xarctan(x)+log|cos(arctan(x))|$$
then using trig,
$$I=xarctan(x)-frac12log(x^2+1)$$
So
$$I_1=int_0^2arctan(x)mathrm{d}x=2arctan2-frac12log5$$
And
$$
begin{align}
I_2=&int_0^2arctan(pi x)mathrm{d}x\
=&frac1piint_0^{2pi}arctan(x)mathrm{d}x\
=&frac1pibigg(2piarctan2pi-frac12log(4pi^2+1)bigg)\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)\
end{align}
$$
So
$$
begin{align}
int_0^2(arctanpi x-arctan x)mathrm{d}x=&I_2-I_1\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)-2arctan2+frac12log5\
=&2arctan2pi-frac1{2}logsqrt[pi]{4pi^2+1}-2arctan2+frac12log5\
=&2(arctan2pi-arctan2)+frac12logfrac{5}{sqrt[pi]{4pi^2+1}}\
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1005422%2fevaluating-int-02-tan-1-pi-x-tan-1-x-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the change of variables $y = xt.$
$$I = int_0^2 int_x^{pi x} frac { mathrm{d}y , mathrm{d}x} {y^2+1}\=int_0^2 int_1^{pi } frac { x} {x^2t^2+1}mathrm{d}t , mathrm{d}x\=int_1^{pi} int_0^{2 } frac { x} {x^2t^2+1}mathrm{d}x , mathrm{d}t\=int_1^{pi} frac{ln(1+4t^2)}{2t^2} mathrm{d}t$$
Now use integration by parts.
$$I = -left.frac{ln(1+4t^2)}{2t}right|_1^{pi}+4int_1^{pi}frac1{1+4t^2} , dt$$
$endgroup$
add a comment |
$begingroup$
Use the change of variables $y = xt.$
$$I = int_0^2 int_x^{pi x} frac { mathrm{d}y , mathrm{d}x} {y^2+1}\=int_0^2 int_1^{pi } frac { x} {x^2t^2+1}mathrm{d}t , mathrm{d}x\=int_1^{pi} int_0^{2 } frac { x} {x^2t^2+1}mathrm{d}x , mathrm{d}t\=int_1^{pi} frac{ln(1+4t^2)}{2t^2} mathrm{d}t$$
Now use integration by parts.
$$I = -left.frac{ln(1+4t^2)}{2t}right|_1^{pi}+4int_1^{pi}frac1{1+4t^2} , dt$$
$endgroup$
add a comment |
$begingroup$
Use the change of variables $y = xt.$
$$I = int_0^2 int_x^{pi x} frac { mathrm{d}y , mathrm{d}x} {y^2+1}\=int_0^2 int_1^{pi } frac { x} {x^2t^2+1}mathrm{d}t , mathrm{d}x\=int_1^{pi} int_0^{2 } frac { x} {x^2t^2+1}mathrm{d}x , mathrm{d}t\=int_1^{pi} frac{ln(1+4t^2)}{2t^2} mathrm{d}t$$
Now use integration by parts.
$$I = -left.frac{ln(1+4t^2)}{2t}right|_1^{pi}+4int_1^{pi}frac1{1+4t^2} , dt$$
$endgroup$
Use the change of variables $y = xt.$
$$I = int_0^2 int_x^{pi x} frac { mathrm{d}y , mathrm{d}x} {y^2+1}\=int_0^2 int_1^{pi } frac { x} {x^2t^2+1}mathrm{d}t , mathrm{d}x\=int_1^{pi} int_0^{2 } frac { x} {x^2t^2+1}mathrm{d}x , mathrm{d}t\=int_1^{pi} frac{ln(1+4t^2)}{2t^2} mathrm{d}t$$
Now use integration by parts.
$$I = -left.frac{ln(1+4t^2)}{2t}right|_1^{pi}+4int_1^{pi}frac1{1+4t^2} , dt$$
edited Nov 4 '14 at 6:48
answered Nov 4 '14 at 6:30
RRLRRL
50.9k42573
50.9k42573
add a comment |
add a comment |
$begingroup$
A more straight forward approach uses integration by parts.
Define:
begin{align}
& I(c)=int_{a}^{b}dx(1 times arctan{c x})=int_{ac}^{bc}frac{dy}{c} (1 timesarctan{ y})=\&frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}int_{ac}^{bc}frac{y}{1+y^2}
end{align}
using partial fraction this reads:
begin{align}
I(c)=frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}log(1+y^2)|_{ac}^{bc}
end{align}
taking $I(pi)-I(0)$ with $a=0$ and $b=2$ we are done
$endgroup$
add a comment |
$begingroup$
A more straight forward approach uses integration by parts.
Define:
begin{align}
& I(c)=int_{a}^{b}dx(1 times arctan{c x})=int_{ac}^{bc}frac{dy}{c} (1 timesarctan{ y})=\&frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}int_{ac}^{bc}frac{y}{1+y^2}
end{align}
using partial fraction this reads:
begin{align}
I(c)=frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}log(1+y^2)|_{ac}^{bc}
end{align}
taking $I(pi)-I(0)$ with $a=0$ and $b=2$ we are done
$endgroup$
add a comment |
$begingroup$
A more straight forward approach uses integration by parts.
Define:
begin{align}
& I(c)=int_{a}^{b}dx(1 times arctan{c x})=int_{ac}^{bc}frac{dy}{c} (1 timesarctan{ y})=\&frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}int_{ac}^{bc}frac{y}{1+y^2}
end{align}
using partial fraction this reads:
begin{align}
I(c)=frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}log(1+y^2)|_{ac}^{bc}
end{align}
taking $I(pi)-I(0)$ with $a=0$ and $b=2$ we are done
$endgroup$
A more straight forward approach uses integration by parts.
Define:
begin{align}
& I(c)=int_{a}^{b}dx(1 times arctan{c x})=int_{ac}^{bc}frac{dy}{c} (1 timesarctan{ y})=\&frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}int_{ac}^{bc}frac{y}{1+y^2}
end{align}
using partial fraction this reads:
begin{align}
I(c)=frac{1}{c}y arctan(y)|_{ac}^{bc}-frac{1}{2c}log(1+y^2)|_{ac}^{bc}
end{align}
taking $I(pi)-I(0)$ with $a=0$ and $b=2$ we are done
edited Nov 4 '14 at 17:59
answered Nov 4 '14 at 17:20
tiredtired
10.6k12043
10.6k12043
add a comment |
add a comment |
$begingroup$
For the sake of an alternative approach, recall the formula for the integral of an inverse function
$$int f^{-1}(x)mathrm{d}x=xf^{-1}(x)-Fcirc f^{-1}(x)$$
Where $F'(x)=f(x)$. Plugging in $f(x)=tan(x)$,
$$I=intarctan(x)mathrm{d}x=xarctan(x)-int_0^{arctan(x)}tan(t)mathrm{d}t$$
Then recall that $$(-log|cos(x)|)'=tan(x)$$
So we have
$$I=xarctan(x)+log|cos(arctan(x))|$$
then using trig,
$$I=xarctan(x)-frac12log(x^2+1)$$
So
$$I_1=int_0^2arctan(x)mathrm{d}x=2arctan2-frac12log5$$
And
$$
begin{align}
I_2=&int_0^2arctan(pi x)mathrm{d}x\
=&frac1piint_0^{2pi}arctan(x)mathrm{d}x\
=&frac1pibigg(2piarctan2pi-frac12log(4pi^2+1)bigg)\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)\
end{align}
$$
So
$$
begin{align}
int_0^2(arctanpi x-arctan x)mathrm{d}x=&I_2-I_1\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)-2arctan2+frac12log5\
=&2arctan2pi-frac1{2}logsqrt[pi]{4pi^2+1}-2arctan2+frac12log5\
=&2(arctan2pi-arctan2)+frac12logfrac{5}{sqrt[pi]{4pi^2+1}}\
end{align}
$$
$endgroup$
add a comment |
$begingroup$
For the sake of an alternative approach, recall the formula for the integral of an inverse function
$$int f^{-1}(x)mathrm{d}x=xf^{-1}(x)-Fcirc f^{-1}(x)$$
Where $F'(x)=f(x)$. Plugging in $f(x)=tan(x)$,
$$I=intarctan(x)mathrm{d}x=xarctan(x)-int_0^{arctan(x)}tan(t)mathrm{d}t$$
Then recall that $$(-log|cos(x)|)'=tan(x)$$
So we have
$$I=xarctan(x)+log|cos(arctan(x))|$$
then using trig,
$$I=xarctan(x)-frac12log(x^2+1)$$
So
$$I_1=int_0^2arctan(x)mathrm{d}x=2arctan2-frac12log5$$
And
$$
begin{align}
I_2=&int_0^2arctan(pi x)mathrm{d}x\
=&frac1piint_0^{2pi}arctan(x)mathrm{d}x\
=&frac1pibigg(2piarctan2pi-frac12log(4pi^2+1)bigg)\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)\
end{align}
$$
So
$$
begin{align}
int_0^2(arctanpi x-arctan x)mathrm{d}x=&I_2-I_1\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)-2arctan2+frac12log5\
=&2arctan2pi-frac1{2}logsqrt[pi]{4pi^2+1}-2arctan2+frac12log5\
=&2(arctan2pi-arctan2)+frac12logfrac{5}{sqrt[pi]{4pi^2+1}}\
end{align}
$$
$endgroup$
add a comment |
$begingroup$
For the sake of an alternative approach, recall the formula for the integral of an inverse function
$$int f^{-1}(x)mathrm{d}x=xf^{-1}(x)-Fcirc f^{-1}(x)$$
Where $F'(x)=f(x)$. Plugging in $f(x)=tan(x)$,
$$I=intarctan(x)mathrm{d}x=xarctan(x)-int_0^{arctan(x)}tan(t)mathrm{d}t$$
Then recall that $$(-log|cos(x)|)'=tan(x)$$
So we have
$$I=xarctan(x)+log|cos(arctan(x))|$$
then using trig,
$$I=xarctan(x)-frac12log(x^2+1)$$
So
$$I_1=int_0^2arctan(x)mathrm{d}x=2arctan2-frac12log5$$
And
$$
begin{align}
I_2=&int_0^2arctan(pi x)mathrm{d}x\
=&frac1piint_0^{2pi}arctan(x)mathrm{d}x\
=&frac1pibigg(2piarctan2pi-frac12log(4pi^2+1)bigg)\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)\
end{align}
$$
So
$$
begin{align}
int_0^2(arctanpi x-arctan x)mathrm{d}x=&I_2-I_1\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)-2arctan2+frac12log5\
=&2arctan2pi-frac1{2}logsqrt[pi]{4pi^2+1}-2arctan2+frac12log5\
=&2(arctan2pi-arctan2)+frac12logfrac{5}{sqrt[pi]{4pi^2+1}}\
end{align}
$$
$endgroup$
For the sake of an alternative approach, recall the formula for the integral of an inverse function
$$int f^{-1}(x)mathrm{d}x=xf^{-1}(x)-Fcirc f^{-1}(x)$$
Where $F'(x)=f(x)$. Plugging in $f(x)=tan(x)$,
$$I=intarctan(x)mathrm{d}x=xarctan(x)-int_0^{arctan(x)}tan(t)mathrm{d}t$$
Then recall that $$(-log|cos(x)|)'=tan(x)$$
So we have
$$I=xarctan(x)+log|cos(arctan(x))|$$
then using trig,
$$I=xarctan(x)-frac12log(x^2+1)$$
So
$$I_1=int_0^2arctan(x)mathrm{d}x=2arctan2-frac12log5$$
And
$$
begin{align}
I_2=&int_0^2arctan(pi x)mathrm{d}x\
=&frac1piint_0^{2pi}arctan(x)mathrm{d}x\
=&frac1pibigg(2piarctan2pi-frac12log(4pi^2+1)bigg)\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)\
end{align}
$$
So
$$
begin{align}
int_0^2(arctanpi x-arctan x)mathrm{d}x=&I_2-I_1\
=&2arctan2pi-frac1{2pi}log(4pi^2+1)-2arctan2+frac12log5\
=&2arctan2pi-frac1{2}logsqrt[pi]{4pi^2+1}-2arctan2+frac12log5\
=&2(arctan2pi-arctan2)+frac12logfrac{5}{sqrt[pi]{4pi^2+1}}\
end{align}
$$
answered Dec 26 '18 at 0:02
clathratusclathratus
4,419336
4,419336
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1005422%2fevaluating-int-02-tan-1-pi-x-tan-1-x-mathrmdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
At third line it seems to me the integral must be $$int_0^{2pi}int_{frac{y}{pi}}^{y}frac{operatorname d!x operatorname d!y}{y^2+1}$$
$endgroup$
– Ángel Mario Gallegos
Nov 4 '14 at 6:13
$begingroup$
but that is taking my answer even further away from what I require.
$endgroup$
– Diya
Nov 4 '14 at 6:50
$begingroup$
I got it! You were right! The integral is divided into two regions. One is the one I used, and the other is the one you mentioned. Thank you so much! :)
$endgroup$
– Diya
Nov 4 '14 at 6:57