How can I solve this ODE $ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$?












1












$begingroup$


The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .



Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$



Thank you.



EDIT:



Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$



because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$



Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$



Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$



Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    $u(t)$ represents the unit step function.
    $endgroup$
    – SplitInfinity
    Mar 5 '16 at 20:26












  • $begingroup$
    Thank you @SplitInfinity that help a lot in the understanding the solution.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:42
















1












$begingroup$


The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .



Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$



Thank you.



EDIT:



Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$



because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$



Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$



Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$



Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    $u(t)$ represents the unit step function.
    $endgroup$
    – SplitInfinity
    Mar 5 '16 at 20:26












  • $begingroup$
    Thank you @SplitInfinity that help a lot in the understanding the solution.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:42














1












1








1


1



$begingroup$


The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .



Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$



Thank you.



EDIT:



Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$



because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$



Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$



Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$



Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$










share|cite|improve this question











$endgroup$




The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .



Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$



Thank you.



EDIT:



Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$



because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$



Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$



Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$



Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 13 '16 at 1:51







Daniel Colon

















asked Mar 5 '16 at 20:04









Daniel ColonDaniel Colon

613




613












  • $begingroup$
    $u(t)$ represents the unit step function.
    $endgroup$
    – SplitInfinity
    Mar 5 '16 at 20:26












  • $begingroup$
    Thank you @SplitInfinity that help a lot in the understanding the solution.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:42


















  • $begingroup$
    $u(t)$ represents the unit step function.
    $endgroup$
    – SplitInfinity
    Mar 5 '16 at 20:26












  • $begingroup$
    Thank you @SplitInfinity that help a lot in the understanding the solution.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:42
















$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26






$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26














$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42




$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42










2 Answers
2






active

oldest

votes


















1












$begingroup$

Solving this with Laplace Transform, with $t>0$:



$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$



Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:



$$u(s)=frac{1}{s}$$



So:



$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:48










  • $begingroup$
    @DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
    $endgroup$
    – Jan
    Mar 13 '16 at 10:55










  • $begingroup$
    Why isn't this marked as the answer?
    $endgroup$
    – DavidG
    Dec 26 '18 at 4:39



















0












$begingroup$

The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$



A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$



If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$



which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:45











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1684611%2fhow-can-i-solve-this-ode-frac-d2xdt2-8-frac-dxdt-25x-10ut%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Solving this with Laplace Transform, with $t>0$:



$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$



Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:



$$u(s)=frac{1}{s}$$



So:



$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:48










  • $begingroup$
    @DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
    $endgroup$
    – Jan
    Mar 13 '16 at 10:55










  • $begingroup$
    Why isn't this marked as the answer?
    $endgroup$
    – DavidG
    Dec 26 '18 at 4:39
















1












$begingroup$

Solving this with Laplace Transform, with $t>0$:



$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$



Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:



$$u(s)=frac{1}{s}$$



So:



$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:48










  • $begingroup$
    @DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
    $endgroup$
    – Jan
    Mar 13 '16 at 10:55










  • $begingroup$
    Why isn't this marked as the answer?
    $endgroup$
    – DavidG
    Dec 26 '18 at 4:39














1












1








1





$begingroup$

Solving this with Laplace Transform, with $t>0$:



$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$



Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:



$$u(s)=frac{1}{s}$$



So:



$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$






share|cite|improve this answer









$endgroup$



Solving this with Laplace Transform, with $t>0$:



$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$



Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:



$$u(s)=frac{1}{s}$$



So:



$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 5 '16 at 20:38









JanJan

21.8k31240




21.8k31240








  • 1




    $begingroup$
    Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:48










  • $begingroup$
    @DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
    $endgroup$
    – Jan
    Mar 13 '16 at 10:55










  • $begingroup$
    Why isn't this marked as the answer?
    $endgroup$
    – DavidG
    Dec 26 '18 at 4:39














  • 1




    $begingroup$
    Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:48










  • $begingroup$
    @DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
    $endgroup$
    – Jan
    Mar 13 '16 at 10:55










  • $begingroup$
    Why isn't this marked as the answer?
    $endgroup$
    – DavidG
    Dec 26 '18 at 4:39








1




1




$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48




$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48












$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55




$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55












$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39




$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39











0












$begingroup$

The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$



A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$



If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$



which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:45
















0












$begingroup$

The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$



A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$



If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$



which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:45














0












0








0





$begingroup$

The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$



A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$



If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$



which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$






share|cite|improve this answer









$endgroup$



The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$



A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$



If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$



which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 7 '16 at 17:48









LutzLLutzL

58.5k42054




58.5k42054












  • $begingroup$
    Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:45


















  • $begingroup$
    Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
    $endgroup$
    – Daniel Colon
    Mar 13 '16 at 1:45
















$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45




$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1684611%2fhow-can-i-solve-this-ode-frac-d2xdt2-8-frac-dxdt-25x-10ut%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna