How can I solve this ODE $ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$?
$begingroup$
The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .
Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$
Thank you.
EDIT:
Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$
because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$
Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$
Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$
Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .
Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$
Thank you.
EDIT:
Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$
because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$
Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$
Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$
Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$
ordinary-differential-equations
$endgroup$
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42
add a comment |
$begingroup$
The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .
Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$
Thank you.
EDIT:
Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$
because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$
Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$
Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$
Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$
ordinary-differential-equations
$endgroup$
The problem its that I don't know how to treat the $ 10u(t) $ to obtain the particular solution since I don't know what the $ u(t) $ function represents.
I've already have the complementary solution of the homogeneous equation associated which is: $ X_c(t)=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t} $ .
Here again, I leave the equation to solve.
$$ frac {d^2x}{dt^2} + 8frac {dx}{dt} + 25x = 10u(t)$$
Thank you.
EDIT:
Thanks SplitInfinity, Yes, the $ u(t) $ was the Step Function and something I forgot to mention that the problem says: consider initial conditions in $ 0 $. So the step function states:
$$ u(t)=
begin{cases}
0 & t<0 \
1 & t ge 0
end{cases} $$
in this case $ t=1 $, therefore the equation ends up like this
$$ begin{align}
x''+8x''+25x&=10(1) \
x''+8x''+25x&=10
end{align}$$
because the non-homogenous part its a linear polinomynal the $X_p$ (proposal solution) need to be in this way:
$$ X_p=A \
X'_p=0 \
X''_p=0 $$
So the equation ends up like:
$$ begin{align}
x_p''+8x'+25x_p & =10 \
0+8(0)+25(A) & = 10 \
A & = frac {10}{25} \
A & = frac 25
end{align}$$
Now the General Slution is given by $ X=X_c+X_p $ wich is:
$$ X=C_1e^{-4t}cos {3t} + C_2e^{-4t}sin {3t}+frac 25 $$
To find out the $C_1 text{ and } C_2$ values we need to apply the initial values, wich are:
$$ x(0)=0 \
x'(0)=0 $$
in order to do so, we derivate $X$
$$ X'=C_1e^{-4t}(-3sin{3t}-4cos{3t})+C_2e^{-4t}(3cos{3t}-4sin{3t}) $$
Now, applying initial values to X:
$$ require{cancel} begin{align}
X(0) & = C_1cancelto{1}{e^{-4(0)}}cancelto{1}{cos{3(0)}}+cancelto{0}{C_2e^{-4(0)}sin{3(0)}}+frac25 \
0 &= C_1 + frac 25 \
C_1 &= -frac25
end{align} $$
Now to $ X' $:
$$ begin{align}
X'(0) &= C_1cancelto{1}{e^{-4(0)}}(cancelto{0}{-3sin{3(0)}})+C_2cancelto{1}{e^{-4(0)}}(3cancelto{1}{cos{3(0)}}-cancelto{0}{4sin{3(0)}}) \
0 &= C_1(-4)+C_2(3) \
0 &= -4C_1 + 3C_2 \
3_C2 &= 4C_1 \
text{Replacing the $C_1$ value} \
C_2 &= frac{4(-frac25)}{3} \
C_2 &= -frac8{15}
end{align} $$
Replacing the constants $ C_1 text{ and } C_2 $ in $X$ we found the solution:
$$ begin{align}
X &= -frac25 e^{-4t}cos{3t}-frac8{15}e^{-4t}sin{3t}+frac25 \
X &= frac1{15} left[ e^{-4}(-6cos{3t}-8sin{3t})+6 right]
end{align} $$
ordinary-differential-equations
ordinary-differential-equations
edited Mar 13 '16 at 1:51
Daniel Colon
asked Mar 5 '16 at 20:04
Daniel ColonDaniel Colon
613
613
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42
add a comment |
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Solving this with Laplace Transform, with $t>0$:
$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$
Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:
$$u(s)=frac{1}{s}$$
So:
$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$
$endgroup$
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
add a comment |
$begingroup$
The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$
A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$
If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$
which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$
$endgroup$
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1684611%2fhow-can-i-solve-this-ode-frac-d2xdt2-8-frac-dxdt-25x-10ut%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Solving this with Laplace Transform, with $t>0$:
$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$
Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:
$$u(s)=frac{1}{s}$$
So:
$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$
$endgroup$
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
add a comment |
$begingroup$
Solving this with Laplace Transform, with $t>0$:
$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$
Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:
$$u(s)=frac{1}{s}$$
So:
$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$
$endgroup$
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
add a comment |
$begingroup$
Solving this with Laplace Transform, with $t>0$:
$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$
Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:
$$u(s)=frac{1}{s}$$
So:
$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$
$endgroup$
Solving this with Laplace Transform, with $t>0$:
$$x''(t)+8x'(t)+25x=10u(t)Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)+8x'(t)+25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+mathcal{L}_{t}left[8x'(t)right]_{(s)}+mathcal{L}_{t}left[25x(t)right]_{(s)}=mathcal{L}_{t}left[10u(t)right]_{(s)}Longleftrightarrow$$
$$mathcal{L}_{t}left[x''(t)right]_{(s)}+8mathcal{L}_{t}left[x'(t)right]_{(s)}+25mathcal{L}_{t}left[x(t)right]_{(s)}=10mathcal{L}_{t}left[u(t)right]_{(s)}Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8left(sx(s)-x(0)right)+25x(s)=10u(s)Longleftrightarrow$$
$$s^2x(s)-sx(0)-x'(0)+8sx(s)-8x(0)+25x(s)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]-sx(0)-x'(0)-8x(0)=10u(s)Longleftrightarrow$$
$$x(s)left[s^2+8s+25right]=10u(s)+sx(0)+x'(0)+8x(0)Longleftrightarrow$$
$$x(s)=frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}Longleftrightarrow$$
$$mathcal{L}_{s}^{-1}left[x(s)right]_{(t)}=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=mathcal{L}_{s}^{-1}left[frac{10u(s)+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}$$
Notice, when $u(t)=theta(t)$ with $theta(t)$ is the 'Unit step function' (Heaviside step function) then we get that the Laplace Transform of that function:
$$u(s)=frac{1}{s}$$
So:
$$x(t)=mathcal{L}_{s}^{-1}left[frac{frac{10}{s}+sx(0)+x'(0)+8x(0)}{s^2+8s+25}right]_{(t)}Longleftrightarrow$$
$$x(t)=frac{12+2e^{-4t}left(3left(5x(0)-2right)cos(3t)+left(20x(0)+5x'(0)-8right)sin(3t)right)}{30}$$
answered Mar 5 '16 at 20:38
JanJan
21.8k31240
21.8k31240
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
add a comment |
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
1
1
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
Thank you @Jan the Laplace solution is going to be helpful in the next series of problems that I have to resolve. Would you recommend me a book that explain in a very clear way the Laplace topic? Thank you again.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:48
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
@DanielColon You're welcome! I'm an engineer so I use books that are explaining engineering so look at the internet your will find some good books
$endgroup$
– Jan
Mar 13 '16 at 10:55
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
$begingroup$
Why isn't this marked as the answer?
$endgroup$
– DavidG
Dec 26 '18 at 4:39
add a comment |
$begingroup$
The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$
A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$
If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$
which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$
$endgroup$
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
add a comment |
$begingroup$
The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$
A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$
If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$
which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$
$endgroup$
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
add a comment |
$begingroup$
The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$
A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$
If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$
which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$
$endgroup$
The homogeneous solution is
$$y_-(t)=e^{-4t}(A_-cos(3t)+B_-sin(3t).$$
A particular solution for the inhomogeneous right side $10$ is a constant function that then has to satisfy $25C=10$ or $C=frac25$, so that the full solution family is
$$
y_+(t)=frac25+e^{-4t}(A_+cos(3t)+B_+sin(3t).
$$
If, as SplitInfinity comments, $u(t)$ is the Heaviside or unit step function, then one has to arrange that both branches of the solution meet at $t=0$ in value and first derivative, that is
$$
y_-(0)=A_-;=;y_+(0)=frac25+A_+\
y_-'(0)=-4A_-+3B_-;=;y_+'(0)=-4A_++3B_+\
implies B_-=frac8{15}+B_+
$$
which gives the full solution as
$$
y(t)=y_-(t)+u(t)(y_+(t)-y_-(t))
=e^{-4t}(A_-cos(3t)+B_-sin(3t)+frac2{15}u(t)left(3-e^{-4t}(3cos(3t)+4sin(3t))right)
$$
answered Mar 7 '16 at 17:48
LutzLLutzL
58.5k42054
58.5k42054
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
add a comment |
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
$begingroup$
Thank you @LutzL it was very helpful seeing that I was in the right way, only get me a little confuse the + and _ signs in the typesetting
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1684611%2fhow-can-i-solve-this-ode-frac-d2xdt2-8-frac-dxdt-25x-10ut%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$u(t)$ represents the unit step function.
$endgroup$
– SplitInfinity
Mar 5 '16 at 20:26
$begingroup$
Thank you @SplitInfinity that help a lot in the understanding the solution.
$endgroup$
– Daniel Colon
Mar 13 '16 at 1:42