Express the set of all paths with infinite $1$'s using set theoretical representation and elements of another...












1












$begingroup$


Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
$$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
Let all infinite length paths be denoted by
$$omega=(omega_n)_{nge1}$$
Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
$$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$




Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)





My approach:

Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.

But, this excludes the cases the paths with finite $0$'s.

However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.


How must I do this?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
    $$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
    Let all infinite length paths be denoted by
    $$omega=(omega_n)_{nge1}$$
    Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
    $$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$




    Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)





    My approach:

    Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.

    But, this excludes the cases the paths with finite $0$'s.

    However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.


    How must I do this?










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
      $$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
      Let all infinite length paths be denoted by
      $$omega=(omega_n)_{nge1}$$
      Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
      $$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$




      Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)





      My approach:

      Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.

      But, this excludes the cases the paths with finite $0$'s.

      However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.


      How must I do this?










      share|cite|improve this question











      $endgroup$




      Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
      $$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
      Let all infinite length paths be denoted by
      $$omega=(omega_n)_{nge1}$$
      Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
      $$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$




      Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)





      My approach:

      Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.

      But, this excludes the cases the paths with finite $0$'s.

      However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.


      How must I do this?







      probability-theory elementary-set-theory random-walk






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 22:26









      Davide Giraudo

      127k17154268




      127k17154268










      asked Jan 6 at 4:58









      Za IraZa Ira

      161115




      161115






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
          $$
          A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
          $$

          holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
            $endgroup$
            – Za Ira
            Jan 6 at 12:13








          • 1




            $begingroup$
            I mean that $A_kinmathcal A$.
            $endgroup$
            – Davide Giraudo
            Jan 6 at 18:40










          • $begingroup$
            I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
            $endgroup$
            – Za Ira
            Jan 14 at 14:36












          • $begingroup$
            Also, could you please explain the construction of that set a little. I am a little lost.
            $endgroup$
            – Za Ira
            Jan 14 at 14:37






          • 1




            $begingroup$
            @ZaIra I edited in order to include a link and correcting the typo.
            $endgroup$
            – Davide Giraudo
            Jan 16 at 16:32











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063506%2fexpress-the-set-of-all-paths-with-infinite-1s-using-set-theoretical-represent%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
          $$
          A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
          $$

          holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
            $endgroup$
            – Za Ira
            Jan 6 at 12:13








          • 1




            $begingroup$
            I mean that $A_kinmathcal A$.
            $endgroup$
            – Davide Giraudo
            Jan 6 at 18:40










          • $begingroup$
            I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
            $endgroup$
            – Za Ira
            Jan 14 at 14:36












          • $begingroup$
            Also, could you please explain the construction of that set a little. I am a little lost.
            $endgroup$
            – Za Ira
            Jan 14 at 14:37






          • 1




            $begingroup$
            @ZaIra I edited in order to include a link and correcting the typo.
            $endgroup$
            – Davide Giraudo
            Jan 16 at 16:32
















          1












          $begingroup$

          Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
          $$
          A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
          $$

          holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
            $endgroup$
            – Za Ira
            Jan 6 at 12:13








          • 1




            $begingroup$
            I mean that $A_kinmathcal A$.
            $endgroup$
            – Davide Giraudo
            Jan 6 at 18:40










          • $begingroup$
            I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
            $endgroup$
            – Za Ira
            Jan 14 at 14:36












          • $begingroup$
            Also, could you please explain the construction of that set a little. I am a little lost.
            $endgroup$
            – Za Ira
            Jan 14 at 14:37






          • 1




            $begingroup$
            @ZaIra I edited in order to include a link and correcting the typo.
            $endgroup$
            – Davide Giraudo
            Jan 16 at 16:32














          1












          1








          1





          $begingroup$

          Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
          $$
          A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
          $$

          holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.






          share|cite|improve this answer











          $endgroup$



          Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
          $$
          A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
          $$

          holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 16:31

























          answered Jan 6 at 10:18









          Davide GiraudoDavide Giraudo

          127k17154268




          127k17154268












          • $begingroup$
            do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
            $endgroup$
            – Za Ira
            Jan 6 at 12:13








          • 1




            $begingroup$
            I mean that $A_kinmathcal A$.
            $endgroup$
            – Davide Giraudo
            Jan 6 at 18:40










          • $begingroup$
            I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
            $endgroup$
            – Za Ira
            Jan 14 at 14:36












          • $begingroup$
            Also, could you please explain the construction of that set a little. I am a little lost.
            $endgroup$
            – Za Ira
            Jan 14 at 14:37






          • 1




            $begingroup$
            @ZaIra I edited in order to include a link and correcting the typo.
            $endgroup$
            – Davide Giraudo
            Jan 16 at 16:32


















          • $begingroup$
            do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
            $endgroup$
            – Za Ira
            Jan 6 at 12:13








          • 1




            $begingroup$
            I mean that $A_kinmathcal A$.
            $endgroup$
            – Davide Giraudo
            Jan 6 at 18:40










          • $begingroup$
            I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
            $endgroup$
            – Za Ira
            Jan 14 at 14:36












          • $begingroup$
            Also, could you please explain the construction of that set a little. I am a little lost.
            $endgroup$
            – Za Ira
            Jan 14 at 14:37






          • 1




            $begingroup$
            @ZaIra I edited in order to include a link and correcting the typo.
            $endgroup$
            – Davide Giraudo
            Jan 16 at 16:32
















          $begingroup$
          do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
          $endgroup$
          – Za Ira
          Jan 6 at 12:13






          $begingroup$
          do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
          $endgroup$
          – Za Ira
          Jan 6 at 12:13






          1




          1




          $begingroup$
          I mean that $A_kinmathcal A$.
          $endgroup$
          – Davide Giraudo
          Jan 6 at 18:40




          $begingroup$
          I mean that $A_kinmathcal A$.
          $endgroup$
          – Davide Giraudo
          Jan 6 at 18:40












          $begingroup$
          I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
          $endgroup$
          – Za Ira
          Jan 14 at 14:36






          $begingroup$
          I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
          $endgroup$
          – Za Ira
          Jan 14 at 14:36














          $begingroup$
          Also, could you please explain the construction of that set a little. I am a little lost.
          $endgroup$
          – Za Ira
          Jan 14 at 14:37




          $begingroup$
          Also, could you please explain the construction of that set a little. I am a little lost.
          $endgroup$
          – Za Ira
          Jan 14 at 14:37




          1




          1




          $begingroup$
          @ZaIra I edited in order to include a link and correcting the typo.
          $endgroup$
          – Davide Giraudo
          Jan 16 at 16:32




          $begingroup$
          @ZaIra I edited in order to include a link and correcting the typo.
          $endgroup$
          – Davide Giraudo
          Jan 16 at 16:32


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063506%2fexpress-the-set-of-all-paths-with-infinite-1s-using-set-theoretical-represent%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna