Express the set of all paths with infinite $1$'s using set theoretical representation and elements of another...
$begingroup$
Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
$$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
Let all infinite length paths be denoted by
$$omega=(omega_n)_{nge1}$$
Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
$$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$
Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)
My approach:
Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.
But, this excludes the cases the paths with finite $0$'s.
However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.
How must I do this?
probability-theory elementary-set-theory random-walk
$endgroup$
add a comment |
$begingroup$
Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
$$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
Let all infinite length paths be denoted by
$$omega=(omega_n)_{nge1}$$
Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
$$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$
Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)
My approach:
Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.
But, this excludes the cases the paths with finite $0$'s.
However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.
How must I do this?
probability-theory elementary-set-theory random-walk
$endgroup$
add a comment |
$begingroup$
Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
$$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
Let all infinite length paths be denoted by
$$omega=(omega_n)_{nge1}$$
Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
$$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$
Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)
My approach:
Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.
But, this excludes the cases the paths with finite $0$'s.
However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.
How must I do this?
probability-theory elementary-set-theory random-walk
$endgroup$
Define the collection $mathscr{A}$ of subsets of $Omega={0,1}^{infty}$ as
$$mathscr{A}={StimesOmega:Ssubseteq{0,1}^{l},lge1}$$
Let all infinite length paths be denoted by
$$omega=(omega_n)_{nge1}$$
Then, define $A$, the set of all paths with infinitely many up(${1}$) moves by
$$A=left{omega:summathbb{I}_{{omega_n=1}}=inftyright}$$
Express $A$ using sets of $mathscr{A}$ and 'countably many', $cup$, 'complementation', $cap$... (set theoretic representation)
My approach:
Initially, I proceeded by defining $A_1,A_2...inmathscr{A}$ as $A_k=S_ktimesOmega$, where $S_k={1,1,...$ $_k$ $_{times}$$}$ and using $underset{k=1}{overset{infty}{bigcap}}A_k={1,1,1...}$.
But, this excludes the cases the paths with finite $0$'s.
However, if I take $underset{k=1}{overset{infty}{bigcup}}A_k={1,1,1...}$, this also includes paths that do not satisfy the infinte $1$'s condition.
How must I do this?
probability-theory elementary-set-theory random-walk
probability-theory elementary-set-theory random-walk
edited Jan 6 at 22:26
Davide Giraudo
127k17154268
127k17154268
asked Jan 6 at 4:58
Za IraZa Ira
161115
161115
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
$$
A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
$$
holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.
$endgroup$
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063506%2fexpress-the-set-of-all-paths-with-infinite-1s-using-set-theoretical-represent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
$$
A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
$$
holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.
$endgroup$
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
add a comment |
$begingroup$
Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
$$
A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
$$
holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.
$endgroup$
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
add a comment |
$begingroup$
Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
$$
A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
$$
holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.
$endgroup$
Let $A_k:=left{left(omega_nright)_{ngeqslant 1}in Omegamid omega_k=1right}$. Then the equality
$$
A=bigcap_{jgeqslant 1}bigcup_{kgeqslant j}A_k
$$
holds (see this thread for a better understanding of the limit superior and inferior of a sequence of sets). In order to see that $A_k$ belongs to $mathcal A$, write this as $S_ktimesOmega$ where $S_k:=left{left(omega_iright)_{i=1}^kin {0,1}^kmid omega_k=1right}$.
edited Jan 16 at 16:31
answered Jan 6 at 10:18
Davide GiraudoDavide Giraudo
127k17154268
127k17154268
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
add a comment |
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
$begingroup$
do you mean $A_k$ in $mathcal{A}$ or $A_k$ in $mathscr{A}$. The proof makes sense, if t's the latter.
$endgroup$
– Za Ira
Jan 6 at 12:13
1
1
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I mean that $A_kinmathcal A$.
$endgroup$
– Davide Giraudo
Jan 6 at 18:40
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
I think it should be $underset{jge 1}{bigcap}underset{kge j}{bigcup}{A_k}$ and not $A_j$.
$endgroup$
– Za Ira
Jan 14 at 14:36
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
$begingroup$
Also, could you please explain the construction of that set a little. I am a little lost.
$endgroup$
– Za Ira
Jan 14 at 14:37
1
1
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
$begingroup$
@ZaIra I edited in order to include a link and correcting the typo.
$endgroup$
– Davide Giraudo
Jan 16 at 16:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063506%2fexpress-the-set-of-all-paths-with-infinite-1s-using-set-theoretical-represent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown