How can I prove that for any $A, B$ if $Asubseteq B$ and $Bsubseteq C$, then $(C-A)cup (B-A)subseteq C$?












1















How can I prove that for any $A, B$ if $Asubseteq B$ and $Bsubseteq C$, then $(C-A)cup (B-A)subseteq C$?




I've been working on this question and I haven't really made much progress with it. I know that I can rewrite it as $(C cap A^c) cup (Bcap A^c)$. I'm pretty sure that if $A subseteq B$ and $B subseteq C$ then $A subseteq C$. If this is the case then wouldn't $(C cap A^c) = emptyset$ and $(B cap A^c) = emptyset$ or am not understanding something with set theory? Thank you for the help.










share|cite|improve this question




















  • 1




    Rewrite each statement as an implication in memberships.
    – J.G.
    Dec 9 '18 at 22:38










  • Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
    – Shaun
    Dec 9 '18 at 22:39












  • $A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
    – fleablood
    Dec 9 '18 at 23:09
















1















How can I prove that for any $A, B$ if $Asubseteq B$ and $Bsubseteq C$, then $(C-A)cup (B-A)subseteq C$?




I've been working on this question and I haven't really made much progress with it. I know that I can rewrite it as $(C cap A^c) cup (Bcap A^c)$. I'm pretty sure that if $A subseteq B$ and $B subseteq C$ then $A subseteq C$. If this is the case then wouldn't $(C cap A^c) = emptyset$ and $(B cap A^c) = emptyset$ or am not understanding something with set theory? Thank you for the help.










share|cite|improve this question




















  • 1




    Rewrite each statement as an implication in memberships.
    – J.G.
    Dec 9 '18 at 22:38










  • Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
    – Shaun
    Dec 9 '18 at 22:39












  • $A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
    – fleablood
    Dec 9 '18 at 23:09














1












1








1








How can I prove that for any $A, B$ if $Asubseteq B$ and $Bsubseteq C$, then $(C-A)cup (B-A)subseteq C$?




I've been working on this question and I haven't really made much progress with it. I know that I can rewrite it as $(C cap A^c) cup (Bcap A^c)$. I'm pretty sure that if $A subseteq B$ and $B subseteq C$ then $A subseteq C$. If this is the case then wouldn't $(C cap A^c) = emptyset$ and $(B cap A^c) = emptyset$ or am not understanding something with set theory? Thank you for the help.










share|cite|improve this question
















How can I prove that for any $A, B$ if $Asubseteq B$ and $Bsubseteq C$, then $(C-A)cup (B-A)subseteq C$?




I've been working on this question and I haven't really made much progress with it. I know that I can rewrite it as $(C cap A^c) cup (Bcap A^c)$. I'm pretty sure that if $A subseteq B$ and $B subseteq C$ then $A subseteq C$. If this is the case then wouldn't $(C cap A^c) = emptyset$ and $(B cap A^c) = emptyset$ or am not understanding something with set theory? Thank you for the help.







discrete-mathematics elementary-set-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 '18 at 22:32









Shaun

8,721113680




8,721113680










asked Dec 9 '18 at 22:29









Dominic Martire

62




62








  • 1




    Rewrite each statement as an implication in memberships.
    – J.G.
    Dec 9 '18 at 22:38










  • Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
    – Shaun
    Dec 9 '18 at 22:39












  • $A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
    – fleablood
    Dec 9 '18 at 23:09














  • 1




    Rewrite each statement as an implication in memberships.
    – J.G.
    Dec 9 '18 at 22:38










  • Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
    – Shaun
    Dec 9 '18 at 22:39












  • $A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
    – fleablood
    Dec 9 '18 at 23:09








1




1




Rewrite each statement as an implication in memberships.
– J.G.
Dec 9 '18 at 22:38




Rewrite each statement as an implication in memberships.
– J.G.
Dec 9 '18 at 22:38












Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
– Shaun
Dec 9 '18 at 22:39






Consider $A={1}, B={1,2}, C={1,2,3}$. We have $Asubseteq Bsubseteq C$. But the complement $A^c$ of $A$ with respect to $C$ (as it's important to stress what the complement is in respect to) is ${2,3}$, so $Ccap A^c={2,3}$ and $Bcap A^c={2}$.
– Shaun
Dec 9 '18 at 22:39














$A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
– fleablood
Dec 9 '18 at 23:09




$A subset C$ means everything in $A$ is in $C$. $Csetminus A$ means all the stuff in $C$ that isn't in $A$. If $A$ is in $C$ then $Csetminus A$ is all the stuff in $C$ that isn't in $A$. That needn't be empty. Maybe you are confusing $C setminus A$ with $A setminus C$? Setminus is not commutative. $A setminus C$ is all the stuff in $A$ that is not in $C$, but everything in $A$ is in $C$ so $Asetminus C = emptyset$. But $Csetminus A$ is just... $C setminus $A$.
– fleablood
Dec 9 '18 at 23:09










4 Answers
4






active

oldest

votes


















1














Quite simply: by definition, $C-Asubseteq Cˆ$ and $B-Asubseteq B$. Further, $Bsubseteq C$...






share|cite|improve this answer





























    1














    It's not the case that $X subseteq Y$ implies $Y-X = emptyset$. Indeed if $X = {0}$ and $Y = {0,1}$ then $Y - X = {1}$.



    We do have, however, that $X subseteq Y$ implies $Y - X subseteq Y$. Applying this to what you have so far, conclude that $C- A subseteq C$ and $B - A subseteq B subseteq C$. Hence $(C-A) cup (B-A) subseteq C$ too.






    share|cite|improve this answer





























      0














      Draw Venn Diagrams. This should be obvious.



      enter image description here



      Now just prove it with Element chasing or definitions or whatever you like.






      share|cite|improve this answer





























        0














        For every $xin (B-A)cup (C-A)$, either $xin B-A$ or $xin C-A$ (or both). For every $xin B-A$, $xin B$ hence $xin C$. For every $xin C-A$, obviously $xin C$. Hence if $xin (B-A)cup (C-A)$, surely $xin C$. By definition, this means that it is a subset of $C$.






        share|cite|improve this answer





















          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033128%2fhow-can-i-prove-that-for-any-a-b-if-a-subseteq-b-and-b-subseteq-c-then%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          Quite simply: by definition, $C-Asubseteq Cˆ$ and $B-Asubseteq B$. Further, $Bsubseteq C$...






          share|cite|improve this answer


























            1














            Quite simply: by definition, $C-Asubseteq Cˆ$ and $B-Asubseteq B$. Further, $Bsubseteq C$...






            share|cite|improve this answer
























              1












              1








              1






              Quite simply: by definition, $C-Asubseteq Cˆ$ and $B-Asubseteq B$. Further, $Bsubseteq C$...






              share|cite|improve this answer












              Quite simply: by definition, $C-Asubseteq Cˆ$ and $B-Asubseteq B$. Further, $Bsubseteq C$...







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 9 '18 at 22:38









              Bernard

              118k639112




              118k639112























                  1














                  It's not the case that $X subseteq Y$ implies $Y-X = emptyset$. Indeed if $X = {0}$ and $Y = {0,1}$ then $Y - X = {1}$.



                  We do have, however, that $X subseteq Y$ implies $Y - X subseteq Y$. Applying this to what you have so far, conclude that $C- A subseteq C$ and $B - A subseteq B subseteq C$. Hence $(C-A) cup (B-A) subseteq C$ too.






                  share|cite|improve this answer


























                    1














                    It's not the case that $X subseteq Y$ implies $Y-X = emptyset$. Indeed if $X = {0}$ and $Y = {0,1}$ then $Y - X = {1}$.



                    We do have, however, that $X subseteq Y$ implies $Y - X subseteq Y$. Applying this to what you have so far, conclude that $C- A subseteq C$ and $B - A subseteq B subseteq C$. Hence $(C-A) cup (B-A) subseteq C$ too.






                    share|cite|improve this answer
























                      1












                      1








                      1






                      It's not the case that $X subseteq Y$ implies $Y-X = emptyset$. Indeed if $X = {0}$ and $Y = {0,1}$ then $Y - X = {1}$.



                      We do have, however, that $X subseteq Y$ implies $Y - X subseteq Y$. Applying this to what you have so far, conclude that $C- A subseteq C$ and $B - A subseteq B subseteq C$. Hence $(C-A) cup (B-A) subseteq C$ too.






                      share|cite|improve this answer












                      It's not the case that $X subseteq Y$ implies $Y-X = emptyset$. Indeed if $X = {0}$ and $Y = {0,1}$ then $Y - X = {1}$.



                      We do have, however, that $X subseteq Y$ implies $Y - X subseteq Y$. Applying this to what you have so far, conclude that $C- A subseteq C$ and $B - A subseteq B subseteq C$. Hence $(C-A) cup (B-A) subseteq C$ too.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 9 '18 at 22:42









                      Badam Baplan

                      4,411722




                      4,411722























                          0














                          Draw Venn Diagrams. This should be obvious.



                          enter image description here



                          Now just prove it with Element chasing or definitions or whatever you like.






                          share|cite|improve this answer


























                            0














                            Draw Venn Diagrams. This should be obvious.



                            enter image description here



                            Now just prove it with Element chasing or definitions or whatever you like.






                            share|cite|improve this answer
























                              0












                              0








                              0






                              Draw Venn Diagrams. This should be obvious.



                              enter image description here



                              Now just prove it with Element chasing or definitions or whatever you like.






                              share|cite|improve this answer












                              Draw Venn Diagrams. This should be obvious.



                              enter image description here



                              Now just prove it with Element chasing or definitions or whatever you like.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 9 '18 at 23:10









                              fleablood

                              68.2k22684




                              68.2k22684























                                  0














                                  For every $xin (B-A)cup (C-A)$, either $xin B-A$ or $xin C-A$ (or both). For every $xin B-A$, $xin B$ hence $xin C$. For every $xin C-A$, obviously $xin C$. Hence if $xin (B-A)cup (C-A)$, surely $xin C$. By definition, this means that it is a subset of $C$.






                                  share|cite|improve this answer


























                                    0














                                    For every $xin (B-A)cup (C-A)$, either $xin B-A$ or $xin C-A$ (or both). For every $xin B-A$, $xin B$ hence $xin C$. For every $xin C-A$, obviously $xin C$. Hence if $xin (B-A)cup (C-A)$, surely $xin C$. By definition, this means that it is a subset of $C$.






                                    share|cite|improve this answer
























                                      0












                                      0








                                      0






                                      For every $xin (B-A)cup (C-A)$, either $xin B-A$ or $xin C-A$ (or both). For every $xin B-A$, $xin B$ hence $xin C$. For every $xin C-A$, obviously $xin C$. Hence if $xin (B-A)cup (C-A)$, surely $xin C$. By definition, this means that it is a subset of $C$.






                                      share|cite|improve this answer












                                      For every $xin (B-A)cup (C-A)$, either $xin B-A$ or $xin C-A$ (or both). For every $xin B-A$, $xin B$ hence $xin C$. For every $xin C-A$, obviously $xin C$. Hence if $xin (B-A)cup (C-A)$, surely $xin C$. By definition, this means that it is a subset of $C$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 10 '18 at 0:13









                                      YiFan

                                      2,5291421




                                      2,5291421






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.





                                          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                          Please pay close attention to the following guidance:


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033128%2fhow-can-i-prove-that-for-any-a-b-if-a-subseteq-b-and-b-subseteq-c-then%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna