Prove an inequality concerning $ln$ function












3












$begingroup$


For any real number $p in (0,1)$, $delta in (0,1)$ and $p+delta <1$, prove the following inequality:
$$(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p} ge 2delta^2$$



I have tried some appoximation on $ln$ function such as $ln(1+x) le x$ and $ln(1+x)ge x-x^2/2$ but it doesn't work.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    For any real number $p in (0,1)$, $delta in (0,1)$ and $p+delta <1$, prove the following inequality:
    $$(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p} ge 2delta^2$$



    I have tried some appoximation on $ln$ function such as $ln(1+x) le x$ and $ln(1+x)ge x-x^2/2$ but it doesn't work.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      For any real number $p in (0,1)$, $delta in (0,1)$ and $p+delta <1$, prove the following inequality:
      $$(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p} ge 2delta^2$$



      I have tried some appoximation on $ln$ function such as $ln(1+x) le x$ and $ln(1+x)ge x-x^2/2$ but it doesn't work.










      share|cite|improve this question











      $endgroup$




      For any real number $p in (0,1)$, $delta in (0,1)$ and $p+delta <1$, prove the following inequality:
      $$(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p} ge 2delta^2$$



      I have tried some appoximation on $ln$ function such as $ln(1+x) le x$ and $ln(1+x)ge x-x^2/2$ but it doesn't work.







      real-analysis derivatives inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 5:55









      Michael Rozenberg

      108k1895200




      108k1895200










      asked Jan 6 at 3:51









      zbh2047zbh2047

      568




      568






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          The hint.



          We need to prove that $f(delta)geq0,$ where
          $$f(delta)=(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p}- 2delta^2.$$
          But by C-S $$f''(delta)=left(lnfrac{p+delta}{p}-lnfrac{1-p-delta}{1-p}-4deltaright)'=$$
          $$=frac{1}{p+delta}+frac{1}{1-p-delta}-4geqfrac{(1+1)^2}{p+delta+1-p-delta}-4=0$$ and
          $$limlimits_{deltarightarrow0^+} f'(delta)=limlimits_{deltarightarrow0^+} f(delta)=0.$$
          Can you end it now?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh! Using Taylor expansion conclude the proof. Thanks!
            $endgroup$
            – zbh2047
            Jan 6 at 8:05










          • $begingroup$
            @zbh2047 You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 6 at 8:55











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063463%2fprove-an-inequality-concerning-ln-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          The hint.



          We need to prove that $f(delta)geq0,$ where
          $$f(delta)=(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p}- 2delta^2.$$
          But by C-S $$f''(delta)=left(lnfrac{p+delta}{p}-lnfrac{1-p-delta}{1-p}-4deltaright)'=$$
          $$=frac{1}{p+delta}+frac{1}{1-p-delta}-4geqfrac{(1+1)^2}{p+delta+1-p-delta}-4=0$$ and
          $$limlimits_{deltarightarrow0^+} f'(delta)=limlimits_{deltarightarrow0^+} f(delta)=0.$$
          Can you end it now?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh! Using Taylor expansion conclude the proof. Thanks!
            $endgroup$
            – zbh2047
            Jan 6 at 8:05










          • $begingroup$
            @zbh2047 You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 6 at 8:55
















          2












          $begingroup$

          The hint.



          We need to prove that $f(delta)geq0,$ where
          $$f(delta)=(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p}- 2delta^2.$$
          But by C-S $$f''(delta)=left(lnfrac{p+delta}{p}-lnfrac{1-p-delta}{1-p}-4deltaright)'=$$
          $$=frac{1}{p+delta}+frac{1}{1-p-delta}-4geqfrac{(1+1)^2}{p+delta+1-p-delta}-4=0$$ and
          $$limlimits_{deltarightarrow0^+} f'(delta)=limlimits_{deltarightarrow0^+} f(delta)=0.$$
          Can you end it now?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Oh! Using Taylor expansion conclude the proof. Thanks!
            $endgroup$
            – zbh2047
            Jan 6 at 8:05










          • $begingroup$
            @zbh2047 You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 6 at 8:55














          2












          2








          2





          $begingroup$

          The hint.



          We need to prove that $f(delta)geq0,$ where
          $$f(delta)=(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p}- 2delta^2.$$
          But by C-S $$f''(delta)=left(lnfrac{p+delta}{p}-lnfrac{1-p-delta}{1-p}-4deltaright)'=$$
          $$=frac{1}{p+delta}+frac{1}{1-p-delta}-4geqfrac{(1+1)^2}{p+delta+1-p-delta}-4=0$$ and
          $$limlimits_{deltarightarrow0^+} f'(delta)=limlimits_{deltarightarrow0^+} f(delta)=0.$$
          Can you end it now?






          share|cite|improve this answer











          $endgroup$



          The hint.



          We need to prove that $f(delta)geq0,$ where
          $$f(delta)=(p+delta)ln frac {p+delta}{p} +(1-p-delta)ln frac {1-p-delta}{1-p}- 2delta^2.$$
          But by C-S $$f''(delta)=left(lnfrac{p+delta}{p}-lnfrac{1-p-delta}{1-p}-4deltaright)'=$$
          $$=frac{1}{p+delta}+frac{1}{1-p-delta}-4geqfrac{(1+1)^2}{p+delta+1-p-delta}-4=0$$ and
          $$limlimits_{deltarightarrow0^+} f'(delta)=limlimits_{deltarightarrow0^+} f(delta)=0.$$
          Can you end it now?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 6 at 6:15

























          answered Jan 6 at 5:53









          Michael RozenbergMichael Rozenberg

          108k1895200




          108k1895200












          • $begingroup$
            Oh! Using Taylor expansion conclude the proof. Thanks!
            $endgroup$
            – zbh2047
            Jan 6 at 8:05










          • $begingroup$
            @zbh2047 You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 6 at 8:55


















          • $begingroup$
            Oh! Using Taylor expansion conclude the proof. Thanks!
            $endgroup$
            – zbh2047
            Jan 6 at 8:05










          • $begingroup$
            @zbh2047 You are welcome!
            $endgroup$
            – Michael Rozenberg
            Jan 6 at 8:55
















          $begingroup$
          Oh! Using Taylor expansion conclude the proof. Thanks!
          $endgroup$
          – zbh2047
          Jan 6 at 8:05




          $begingroup$
          Oh! Using Taylor expansion conclude the proof. Thanks!
          $endgroup$
          – zbh2047
          Jan 6 at 8:05












          $begingroup$
          @zbh2047 You are welcome!
          $endgroup$
          – Michael Rozenberg
          Jan 6 at 8:55




          $begingroup$
          @zbh2047 You are welcome!
          $endgroup$
          – Michael Rozenberg
          Jan 6 at 8:55


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063463%2fprove-an-inequality-concerning-ln-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna