For which $p in [1,infty]$ does $g, g_{A}$ and $g_{A^{c}} in mathcal{L}^p$ hold?












1












$begingroup$


Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
.



Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$



Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$



Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$



for $p =1$



$int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $



And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.



Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$



and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.



On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:



$(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$



Any guidance on this problem is greatly appreciated.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
    .



    Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$



    Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$



    Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$



    for $p =1$



    $int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $



    And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.



    Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$



    and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.



    On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:



    $(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$



    Any guidance on this problem is greatly appreciated.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
      .



      Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$



      Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$



      Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$



      for $p =1$



      $int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $



      And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.



      Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$



      and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.



      On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:



      $(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$



      Any guidance on this problem is greatly appreciated.










      share|cite|improve this question









      $endgroup$




      Let $s in mathbb R, d in mathbb N$, $g:mathbb R^{d}to bar{mathbb R}, x mapsto |x|^s$
      .



      Set $E_{d}:={xin mathbb R^{d}:|x|leq 1}$



      Determine $p in [1,infty]$ for which $g, gchi_{E_{d}}$ and $gchi_{E_{d}^{c}} in mathcal{L}^{p}$



      Idea: Assume $g geq 0$ without loss of generality otherwise: $g:=g_{+}-g_{-}$



      for $p =1$



      $int_{mathbb R^{d}}gdlambda^{d}(x)=int_{mathbb R^{d}}x^sdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}x^sdlambda)...dlambda=int_{mathbb R}...frac{x^{s+1}}{s+1}vert_{-infty}^{infty}...dlambda$ so $notin mathcal{L}^{1} $



      And if $gnotin mathcal{L}^{1}$ I want to say $g notin mathcal{L}^{p},forall pin]1,infty]$ but this does not seem possible given that fact that $lambda^{d}(mathbb R^{d})=infty$, so this shortcut is not possible.



      Next $int_{E^{d}}gdlambda^{d}(x)=int_{mathbb R}...(int_{mathbb R}gchi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}x^{s}chi_{[-1,1]}dlambda)...dlambda=int_{mathbb R}...(int_{mathbb R}frac{x^{s+1}}{s+1}|^{1}_{-1}dlambda)...dlambda$



      and $frac{x^{s+1}}{s+1}|^{1}_{-1}=frac{1}{s+1}-frac{(-1)^{s+1}}{s+1}$ and if $s $ us an odd number then we get $0$, and therefore $int_{E^{d}}gdlambda^{d}(x)=0$, I for all other cases of $s in mathbb R$, we get $gchi_{E_{d}}in mathcal{L}^1$ but I am unsure on how to reason it precisely.



      On $int_{(E^{d})^{c}}gdlambda^{d}(x)$, I am lost and for all cases $p in ]1,infty]$ I am unsure on what to do for all three function, particulary given:



      $(int_{mathbb R^{d}}x^{sp}dlambda^{d}(x))^{frac{1}{p}}$, where $p in ]1,infty]$



      Any guidance on this problem is greatly appreciated.







      real-analysis integration measure-theory lp-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 at 14:13









      MinaThumaMinaThuma

      1968




      1968






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.



          Here are some steps to solve the problem:




          1. First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.

          2. The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
            $$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066211%2ffor-which-p-in-1-infty-does-g-g-a-and-g-ac-in-mathcallp-h%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.



            Here are some steps to solve the problem:




            1. First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.

            2. The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
              $$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.



              Here are some steps to solve the problem:




              1. First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.

              2. The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
                $$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.



                Here are some steps to solve the problem:




                1. First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.

                2. The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
                  $$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$






                share|cite|improve this answer











                $endgroup$



                A problem in your approach is that you wrote $x^s$ for an element of $mathbb R^d$, while we want to work to the norm of $x$ to the power $s$.



                Here are some steps to solve the problem:




                1. First treat completely the one dimensional case, which consists in studying the convergence of $int_0^1 x^{ps}mathrm dx$ and $int_1^{+infty} x^{ps}mathrm dx$.

                2. The function $xmapsto leftlvert xrightrvert^{ps}$ is radial, in sense that it depends only on the norm of $x$ hence (by a change in polar coordinates for example) $$int_{E_d}leftlvert xrightrvert^{ps}=c_d int_{0}^1t^{ps}t^{n-1}mathrm dt;$$
                  $$int_{E_d^c}leftlvert xrightrvert^{ps}=c_d int_{1}^{+infty}t^{ps}t^{n-1}mathrm dt.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 10 at 21:30

























                answered Jan 8 at 21:34









                Davide GiraudoDavide Giraudo

                128k17156268




                128k17156268






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066211%2ffor-which-p-in-1-infty-does-g-g-a-and-g-ac-in-mathcallp-h%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna