solve differential equation $frac{dP}{dt} = kPcos^{2}(rt-Theta)$












1














I'm asked to solve the following differential equation.



$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$



$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$



I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.










share|cite|improve this question




















  • 3




    Do you not think it's linear? Do you not think it's separable?
    – David
    Dec 10 '18 at 2:55
















1














I'm asked to solve the following differential equation.



$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$



$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$



I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.










share|cite|improve this question




















  • 3




    Do you not think it's linear? Do you not think it's separable?
    – David
    Dec 10 '18 at 2:55














1












1








1


1





I'm asked to solve the following differential equation.



$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$



$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$



I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.










share|cite|improve this question















I'm asked to solve the following differential equation.



$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$



$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$



I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.







calculus differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 3:13









Mattos

2,73021321




2,73021321










asked Dec 10 '18 at 2:50









BOBBY SHMURDA

102




102








  • 3




    Do you not think it's linear? Do you not think it's separable?
    – David
    Dec 10 '18 at 2:55














  • 3




    Do you not think it's linear? Do you not think it's separable?
    – David
    Dec 10 '18 at 2:55








3




3




Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55




Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55










1 Answer
1






active

oldest

votes


















1














The equation



$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$



is in fact of the variables-seperable type, to wit:



If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write



$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$



we integrate 'twixt $t_0$ and $t$:



$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$



we have in general (from a table of integrals):



$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$



setting



$alpha = dfrac{Theta}{r}, tag 5$



we write



$rt - Theta = r(t - alpha), tag 6$



and



$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$



setting



$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$



we write



$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$



returning to (3),



$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$



or



$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$



there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033370%2fsolve-differential-equation-fracdpdt-kpcos2rt-theta%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    The equation



    $dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$



    is in fact of the variables-seperable type, to wit:



    If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write



    $dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$



    we integrate 'twixt $t_0$ and $t$:



    $ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$



    we have in general (from a table of integrals):



    $displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$



    setting



    $alpha = dfrac{Theta}{r}, tag 5$



    we write



    $rt - Theta = r(t - alpha), tag 6$



    and



    $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
    $= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
    $= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$



    setting



    $beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$



    we write



    $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$



    returning to (3),



    $ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$



    or



    $P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
    $= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$



    there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.






    share|cite|improve this answer




























      1














      The equation



      $dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$



      is in fact of the variables-seperable type, to wit:



      If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write



      $dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$



      we integrate 'twixt $t_0$ and $t$:



      $ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$



      we have in general (from a table of integrals):



      $displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$



      setting



      $alpha = dfrac{Theta}{r}, tag 5$



      we write



      $rt - Theta = r(t - alpha), tag 6$



      and



      $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
      $= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
      $= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$



      setting



      $beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$



      we write



      $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$



      returning to (3),



      $ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$



      or



      $P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
      $= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$



      there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.






      share|cite|improve this answer


























        1












        1








        1






        The equation



        $dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$



        is in fact of the variables-seperable type, to wit:



        If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write



        $dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$



        we integrate 'twixt $t_0$ and $t$:



        $ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$



        we have in general (from a table of integrals):



        $displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$



        setting



        $alpha = dfrac{Theta}{r}, tag 5$



        we write



        $rt - Theta = r(t - alpha), tag 6$



        and



        $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
        $= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
        $= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$



        setting



        $beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$



        we write



        $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$



        returning to (3),



        $ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$



        or



        $P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
        $= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$



        there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.






        share|cite|improve this answer














        The equation



        $dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$



        is in fact of the variables-seperable type, to wit:



        If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write



        $dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$



        we integrate 'twixt $t_0$ and $t$:



        $ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$



        we have in general (from a table of integrals):



        $displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$



        setting



        $alpha = dfrac{Theta}{r}, tag 5$



        we write



        $rt - Theta = r(t - alpha), tag 6$



        and



        $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
        $= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
        $= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$



        setting



        $beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$



        we write



        $displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$



        returning to (3),



        $ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$



        or



        $P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
        $= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$



        there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 10 '18 at 5:10

























        answered Dec 10 '18 at 4:57









        Robert Lewis

        43.7k22963




        43.7k22963






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033370%2fsolve-differential-equation-fracdpdt-kpcos2rt-theta%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna