solve differential equation $frac{dP}{dt} = kPcos^{2}(rt-Theta)$
I'm asked to solve the following differential equation.
$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$
$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$
I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.
calculus differential-equations
add a comment |
I'm asked to solve the following differential equation.
$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$
$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$
I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.
calculus differential-equations
3
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55
add a comment |
I'm asked to solve the following differential equation.
$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$
$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$
I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.
calculus differential-equations
I'm asked to solve the following differential equation.
$$frac{dP}{dt} = kP cos^{2}(rt-theta)$$
$P(0) = P_{0} = 9$ for $k = 0.07, r = 0.49, theta = 7.$
I've only done simple linear and separable differential equations up until this point, so I'm not sure how to approach this one. Any pointers or solutions are much appreciated.
calculus differential-equations
calculus differential-equations
edited Dec 10 '18 at 3:13
Mattos
2,73021321
2,73021321
asked Dec 10 '18 at 2:50
BOBBY SHMURDA
102
102
3
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55
add a comment |
3
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55
3
3
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55
add a comment |
1 Answer
1
active
oldest
votes
The equation
$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$
is in fact of the variables-seperable type, to wit:
If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write
$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$
we integrate 'twixt $t_0$ and $t$:
$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$
we have in general (from a table of integrals):
$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$
setting
$alpha = dfrac{Theta}{r}, tag 5$
we write
$rt - Theta = r(t - alpha), tag 6$
and
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$
setting
$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$
we write
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$
returning to (3),
$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$
or
$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$
there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033370%2fsolve-differential-equation-fracdpdt-kpcos2rt-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The equation
$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$
is in fact of the variables-seperable type, to wit:
If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write
$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$
we integrate 'twixt $t_0$ and $t$:
$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$
we have in general (from a table of integrals):
$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$
setting
$alpha = dfrac{Theta}{r}, tag 5$
we write
$rt - Theta = r(t - alpha), tag 6$
and
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$
setting
$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$
we write
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$
returning to (3),
$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$
or
$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$
there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.
add a comment |
The equation
$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$
is in fact of the variables-seperable type, to wit:
If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write
$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$
we integrate 'twixt $t_0$ and $t$:
$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$
we have in general (from a table of integrals):
$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$
setting
$alpha = dfrac{Theta}{r}, tag 5$
we write
$rt - Theta = r(t - alpha), tag 6$
and
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$
setting
$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$
we write
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$
returning to (3),
$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$
or
$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$
there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.
add a comment |
The equation
$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$
is in fact of the variables-seperable type, to wit:
If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write
$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$
we integrate 'twixt $t_0$ and $t$:
$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$
we have in general (from a table of integrals):
$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$
setting
$alpha = dfrac{Theta}{r}, tag 5$
we write
$rt - Theta = r(t - alpha), tag 6$
and
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$
setting
$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$
we write
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$
returning to (3),
$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$
or
$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$
there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.
The equation
$dfrac{dP}{dt} = kP cos^2 (rt - Theta) tag 1$
is in fact of the variables-seperable type, to wit:
If $P(t') = 0$ for any $t' in Bbb R$, then by uniqueness of solutions $P(t) = 0$ for all $t in Bbb R$, since the zero solution satisfies $P(t') = 0$. Furthermore, by if necessary reversing the sign of $P$ (a valid operation by linearity) if necessary we may take $P > 0$. Therefore, for any solution which does not vanish identically we may write
$dfrac{dln P}{dt} = dfrac{1}{P}dfrac{dP}{dt} = k cos^2 (rt - Theta); tag 2$
we integrate 'twixt $t_0$ and $t$:
$ln dfrac{P(t)}{P(t_0)} = ln P(t) - ln P(t_0) = k displaystyle int_{t_0}^t cos^2(rt - Theta) ; dt; tag 3$
we have in general (from a table of integrals):
$displaystyle int cos^2 ax ; dx = dfrac{x}{2} + dfrac{sin 2ax}{4a}; tag 4$
setting
$alpha = dfrac{Theta}{r}, tag 5$
we write
$rt - Theta = r(t - alpha), tag 6$
and
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = int_{t_0}^t cos^2 r(t - alpha) ; dt = left ( dfrac{t - alpha}{2} + dfrac{sin 2r(t - alpha)}{4r} right vert_{t_0}^t$
$= dfrac{t - t_0}{2} + dfrac{sin 2r(t - alpha) - sin 2r(t_0 - alpha)}{4r}$
$= left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r}right ) - left ( dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r} right ); tag 7$
setting
$beta(t_0) = dfrac{t_0}{2} + dfrac{sin 2r(t_0 - alpha)}{4r}, tag 8$
we write
$displaystyle int_{t_0}^t cos^2 (rt - Theta) ; dt = dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} - beta(t_0); tag 9$
returning to (3),
$ln dfrac{P(t)}{P(t_0)} = k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0), tag{10}$
or
$P(t) = P(t_0) exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right ) - kbeta(t_0) right )$
$= P(t_0) e^{ - kbeta(t_0) } exp left ( k left ( dfrac{t}{2} + dfrac{sin 2r(t - alpha)}{4r} right )right ); tag{11}$
there is not much to be gained at this point by furhter re-arrangement of (11). The reader my substitute specific values of the constants (including $t_0$ and $P(t_0)$) to realize a speciic, concrete solution.
edited Dec 10 '18 at 5:10
answered Dec 10 '18 at 4:57
Robert Lewis
43.7k22963
43.7k22963
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033370%2fsolve-differential-equation-fracdpdt-kpcos2rt-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
Do you not think it's linear? Do you not think it's separable?
– David
Dec 10 '18 at 2:55