Link between Hadamard's inequality for positive-definite matrices and general Hadamard's inequality
$begingroup$
I've found two versions of Hadamard's inequality :
(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?
matrices inequality determinant
$endgroup$
add a comment |
$begingroup$
I've found two versions of Hadamard's inequality :
(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?
matrices inequality determinant
$endgroup$
1
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02
add a comment |
$begingroup$
I've found two versions of Hadamard's inequality :
(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?
matrices inequality determinant
$endgroup$
I've found two versions of Hadamard's inequality :
(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?
matrices inequality determinant
matrices inequality determinant
asked Jan 3 at 13:26
Mishikumo2019Mishikumo2019
83
83
1
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02
add a comment |
1
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02
1
1
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using comment of @mouthetics,
From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$
Since $det(MM^T)=det(M)det(M^T)=det(M)^2$
we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060554%2flink-between-hadamards-inequality-for-positive-definite-matrices-and-general-ha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using comment of @mouthetics,
From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$
Since $det(MM^T)=det(M)det(M^T)=det(M)^2$
we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.
$endgroup$
add a comment |
$begingroup$
Using comment of @mouthetics,
From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$
Since $det(MM^T)=det(M)det(M^T)=det(M)^2$
we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.
$endgroup$
add a comment |
$begingroup$
Using comment of @mouthetics,
From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$
Since $det(MM^T)=det(M)det(M^T)=det(M)^2$
we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.
$endgroup$
Using comment of @mouthetics,
From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$
Since $det(MM^T)=det(M)det(M^T)=det(M)^2$
we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.
answered Jan 4 at 7:24
LeeLee
330111
330111
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060554%2flink-between-hadamards-inequality-for-positive-definite-matrices-and-general-ha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02