Link between Hadamard's inequality for positive-definite matrices and general Hadamard's inequality












1












$begingroup$


I've found two versions of Hadamard's inequality :



(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
    $endgroup$
    – mouthetics
    Jan 3 at 16:02
















1












$begingroup$


I've found two versions of Hadamard's inequality :



(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
    $endgroup$
    – mouthetics
    Jan 3 at 16:02














1












1








1





$begingroup$


I've found two versions of Hadamard's inequality :



(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?










share|cite|improve this question









$endgroup$




I've found two versions of Hadamard's inequality :



(1) If $P$ is a $ntimes n$ positive-semidefinite matrix, then :
$$det(P)leprod_{i=1}^n p_{ii} .$$
(2) For any $M$ is a $ntimes n$ matrix, then :
$$|det(M)|leprod_{i=1}^n ||m_i || =prod_{i=1}^n left(sum_{j=1}^n |a_{ij}|^2right)^{1/2}.$$
It's easy to prove that $(2)Rightarrow (1)$, but do we have $(1)Rightarrow (2)$ ?







matrices inequality determinant






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 3 at 13:26









Mishikumo2019Mishikumo2019

83




83








  • 1




    $begingroup$
    Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
    $endgroup$
    – mouthetics
    Jan 3 at 16:02














  • 1




    $begingroup$
    Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
    $endgroup$
    – mouthetics
    Jan 3 at 16:02








1




1




$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02




$begingroup$
Yes it does. Let $M$ be any matrix. Then $MM^t$ is a positive semi-definite matrix.
$endgroup$
– mouthetics
Jan 3 at 16:02










1 Answer
1






active

oldest

votes


















0












$begingroup$

Using comment of @mouthetics,



From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$



Since $det(MM^T)=det(M)det(M^T)=det(M)^2$



we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060554%2flink-between-hadamards-inequality-for-positive-definite-matrices-and-general-ha%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Using comment of @mouthetics,



    From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$



    Since $det(MM^T)=det(M)det(M^T)=det(M)^2$



    we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Using comment of @mouthetics,



      From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$



      Since $det(MM^T)=det(M)det(M^T)=det(M)^2$



      we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Using comment of @mouthetics,



        From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$



        Since $det(MM^T)=det(M)det(M^T)=det(M)^2$



        we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.






        share|cite|improve this answer









        $endgroup$



        Using comment of @mouthetics,



        From (1) we know that $sqrt{det(MM^T)}leprod_{i=1}^n{MM^T}_{ii}^{1/2}=prod_{i=1}^n left(sum_{j=1}^n |m_{ij}|^2right)^{1/2}=prod_{i=1}^n ||m_i ||$



        Since $det(MM^T)=det(M)det(M^T)=det(M)^2$



        we have $|det(M)|=sqrt{det(MM^T)}leprod_{i=1}^n ||m_i ||$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 4 at 7:24









        LeeLee

        330111




        330111






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060554%2flink-between-hadamards-inequality-for-positive-definite-matrices-and-general-ha%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna