Show that $frac{(2n)!!}{(2n+1)!!}$ converges.
$begingroup$
Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$
Show that $x_n$ converges.
I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$
By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$
Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$
Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?
calculus limits factorial
$endgroup$
add a comment |
$begingroup$
Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$
Show that $x_n$ converges.
I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$
By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$
Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$
Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?
calculus limits factorial
$endgroup$
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12
add a comment |
$begingroup$
Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$
Show that $x_n$ converges.
I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$
By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$
Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$
Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?
calculus limits factorial
$endgroup$
Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$
Show that $x_n$ converges.
I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$
By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$
Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$
Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?
calculus limits factorial
calculus limits factorial
edited Jan 3 at 13:14
roman
asked Jan 3 at 12:54
romanroman
2,34321224
2,34321224
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12
add a comment |
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You have
$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.
$endgroup$
add a comment |
$begingroup$
Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$
$
begin{align*}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{4^n (n!)^2}{(2n+1) (2n)!}\
& sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
&= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
end{align*}
$
So $x_n rightarrow 0$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060536%2fshow-that-frac2n2n1-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.
$endgroup$
add a comment |
$begingroup$
You have
$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.
$endgroup$
add a comment |
$begingroup$
You have
$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.
$endgroup$
You have
$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.
answered Jan 3 at 13:01
Severin SchravenSeverin Schraven
6,4051935
6,4051935
add a comment |
add a comment |
$begingroup$
Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$
$
begin{align*}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{4^n (n!)^2}{(2n+1) (2n)!}\
& sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
&= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
end{align*}
$
So $x_n rightarrow 0$
$endgroup$
add a comment |
$begingroup$
Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$
$
begin{align*}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{4^n (n!)^2}{(2n+1) (2n)!}\
& sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
&= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
end{align*}
$
So $x_n rightarrow 0$
$endgroup$
add a comment |
$begingroup$
Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$
$
begin{align*}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{4^n (n!)^2}{(2n+1) (2n)!}\
& sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
&= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
end{align*}
$
So $x_n rightarrow 0$
$endgroup$
Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$
$
begin{align*}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{4^n (n!)^2}{(2n+1) (2n)!}\
& sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
&= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
end{align*}
$
So $x_n rightarrow 0$
answered Jan 3 at 13:19
S. FranssenS. Franssen
1186
1186
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060536%2fshow-that-frac2n2n1-converges%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05
$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05
$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08
$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12