Show that $frac{(2n)!!}{(2n+1)!!}$ converges.












0












$begingroup$



Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$

Show that $x_n$ converges.




I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$



By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$



Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$



Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
    $endgroup$
    – 5xum
    Jan 3 at 13:05










  • $begingroup$
    The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
    $endgroup$
    – xbh
    Jan 3 at 13:05










  • $begingroup$
    @5xum I made a mistake in the nominator.
    $endgroup$
    – roman
    Jan 3 at 13:08










  • $begingroup$
    @5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
    $endgroup$
    – S. Franssen
    Jan 3 at 13:12
















0












$begingroup$



Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$

Show that $x_n$ converges.




I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$



By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$



Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$



Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
    $endgroup$
    – 5xum
    Jan 3 at 13:05










  • $begingroup$
    The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
    $endgroup$
    – xbh
    Jan 3 at 13:05










  • $begingroup$
    @5xum I made a mistake in the nominator.
    $endgroup$
    – roman
    Jan 3 at 13:08










  • $begingroup$
    @5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
    $endgroup$
    – S. Franssen
    Jan 3 at 13:12














0












0








0





$begingroup$



Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$

Show that $x_n$ converges.




I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$



By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$



Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$



Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?










share|cite|improve this question











$endgroup$





Given a sequence ${x_n}, ninBbb N$:
$$
x_n = frac{(2n)!!}{(2n+1)!!}
$$

Show that $x_n$ converges.




I'm wondering why I'm getting a seemingly wrong result (assuming the problem statement asks to prove convergence):
$$
begin{align}
x_n &= frac{(2n)!!}{(2n+1)!!} \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1) } \
&= frac{2cdot 4cdot 6cdots (2n-2)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{2(n)!}{2(n)!} \
&= frac{4^n (n!)^2}{(2n+1)!} \
&= frac{4^n (n!)^2}{(2n+1)cdot (2n)!} \
&=frac{4^n}{2n+1}cdot frac{(n!)^2}{(2n)!}
end{align}
$$



By Binomial coefficients:
$$
{2nchoose n} = frac{(2n)!}{n!(2n-n)!} = frac{(2n)!}{(n!)^2}
$$



Thus:
$$
x_n = frac{4^n}{2n+1}cdot frac{1}{{2n choose n}}
$$



Doesn't $frac{4^n}{2n+1}$ grow faster than $frac{1}{2nchoose n}$ is declining? Shouldn't $x_n$ diverge in that case?







calculus limits factorial






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 13:14







roman

















asked Jan 3 at 12:54









romanroman

2,34321224




2,34321224












  • $begingroup$
    I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
    $endgroup$
    – 5xum
    Jan 3 at 13:05










  • $begingroup$
    The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
    $endgroup$
    – xbh
    Jan 3 at 13:05










  • $begingroup$
    @5xum I made a mistake in the nominator.
    $endgroup$
    – roman
    Jan 3 at 13:08










  • $begingroup$
    @5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
    $endgroup$
    – S. Franssen
    Jan 3 at 13:12


















  • $begingroup$
    I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
    $endgroup$
    – 5xum
    Jan 3 at 13:05










  • $begingroup$
    The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
    $endgroup$
    – xbh
    Jan 3 at 13:05










  • $begingroup$
    @5xum I made a mistake in the nominator.
    $endgroup$
    – roman
    Jan 3 at 13:08










  • $begingroup$
    @5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
    $endgroup$
    – S. Franssen
    Jan 3 at 13:12
















$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05




$begingroup$
I don't see how $$frac{2cdot 4cdot 6cdots (2n-1)cdot(2n)}{3cdot 5cdot 7cdots (2n-1)cdot(2n+1)} cdot frac{(2n)!}{(2n)!} = \= frac{4^n (n!)^2}{(2n+1)!} $$ would be true.
$endgroup$
– 5xum
Jan 3 at 13:05












$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05




$begingroup$
The asymptotic behavior of $binom {2n} n$ could be determined by Stirling approximation. It may not be slow as you think.
$endgroup$
– xbh
Jan 3 at 13:05












$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08




$begingroup$
@5xum I made a mistake in the nominator.
$endgroup$
– roman
Jan 3 at 13:08












$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12




$begingroup$
@5xum, there is a mistake in the notation, it should be 2(n!) instead of (2n)! to make this result true. You can then compute this using Stirling.
$endgroup$
– S. Franssen
Jan 3 at 13:12










2 Answers
2






active

oldest

votes


















10












$begingroup$

You have



$$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
thus, your sequence is monotone decreasing and bounded from below and therefore convergent.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$



    $
    begin{align*}
    x_n &= frac{(2n)!!}{(2n+1)!!} \
    &= frac{4^n (n!)^2}{(2n+1) (2n)!}\
    & sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
    &= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
    end{align*}
    $



    So $x_n rightarrow 0$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060536%2fshow-that-frac2n2n1-converges%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      10












      $begingroup$

      You have



      $$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
      thus, your sequence is monotone decreasing and bounded from below and therefore convergent.






      share|cite|improve this answer









      $endgroup$


















        10












        $begingroup$

        You have



        $$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
        thus, your sequence is monotone decreasing and bounded from below and therefore convergent.






        share|cite|improve this answer









        $endgroup$
















          10












          10








          10





          $begingroup$

          You have



          $$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
          thus, your sequence is monotone decreasing and bounded from below and therefore convergent.






          share|cite|improve this answer









          $endgroup$



          You have



          $$0leq x_{n+1} = x_n cdot frac{2n+2}{2n+3} leq x_n$$
          thus, your sequence is monotone decreasing and bounded from below and therefore convergent.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 3 at 13:01









          Severin SchravenSeverin Schraven

          6,4051935




          6,4051935























              2












              $begingroup$

              Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$



              $
              begin{align*}
              x_n &= frac{(2n)!!}{(2n+1)!!} \
              &= frac{4^n (n!)^2}{(2n+1) (2n)!}\
              & sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
              &= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
              end{align*}
              $



              So $x_n rightarrow 0$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$



                $
                begin{align*}
                x_n &= frac{(2n)!!}{(2n+1)!!} \
                &= frac{4^n (n!)^2}{(2n+1) (2n)!}\
                & sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
                &= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
                end{align*}
                $



                So $x_n rightarrow 0$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$



                  $
                  begin{align*}
                  x_n &= frac{(2n)!!}{(2n+1)!!} \
                  &= frac{4^n (n!)^2}{(2n+1) (2n)!}\
                  & sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
                  &= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
                  end{align*}
                  $



                  So $x_n rightarrow 0$






                  share|cite|improve this answer









                  $endgroup$



                  Using the Stirling approximation for factorials we can observe the following: $n! sim sqrt{2 pi n} left( frac{n}{e} right)^n$. This means that, while being a bit sloppy with the $sim$



                  $
                  begin{align*}
                  x_n &= frac{(2n)!!}{(2n+1)!!} \
                  &= frac{4^n (n!)^2}{(2n+1) (2n)!}\
                  & sim frac{4^n 2 pi n left( frac{n}{e} right)^{2n}}{ (2n+1) 2sqrt{pi n} left(frac{2n}{e} right)^{2n}}\
                  &= frac{sqrt{pi n}}{2 n + 1} rightarrow 0
                  end{align*}
                  $



                  So $x_n rightarrow 0$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 3 at 13:19









                  S. FranssenS. Franssen

                  1186




                  1186






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060536%2fshow-that-frac2n2n1-converges%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna