Sum of series $sqrt{1+frac1{n^2}+frac1{(n+1){}^2}}$
$begingroup$
How to solve this sum?$$sqrt{1+frac1{1^2}+frac1{2^2}}+sqrt{1+frac1{2^2}+frac1{3^2}}+cdots+sqrt{1+frac1{19^2}+frac1{20^2}}$$
I assumed it to be a sum of $sqrt{1+dfrac{1}{n^2} + dfrac{1}{(n+1)^2}}$ but It complicates the powers and I am unable to factorise further.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
How to solve this sum?$$sqrt{1+frac1{1^2}+frac1{2^2}}+sqrt{1+frac1{2^2}+frac1{3^2}}+cdots+sqrt{1+frac1{19^2}+frac1{20^2}}$$
I assumed it to be a sum of $sqrt{1+dfrac{1}{n^2} + dfrac{1}{(n+1)^2}}$ but It complicates the powers and I am unable to factorise further.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
How to solve this sum?$$sqrt{1+frac1{1^2}+frac1{2^2}}+sqrt{1+frac1{2^2}+frac1{3^2}}+cdots+sqrt{1+frac1{19^2}+frac1{20^2}}$$
I assumed it to be a sum of $sqrt{1+dfrac{1}{n^2} + dfrac{1}{(n+1)^2}}$ but It complicates the powers and I am unable to factorise further.
sequences-and-series
$endgroup$
How to solve this sum?$$sqrt{1+frac1{1^2}+frac1{2^2}}+sqrt{1+frac1{2^2}+frac1{3^2}}+cdots+sqrt{1+frac1{19^2}+frac1{20^2}}$$
I assumed it to be a sum of $sqrt{1+dfrac{1}{n^2} + dfrac{1}{(n+1)^2}}$ but It complicates the powers and I am unable to factorise further.
sequences-and-series
sequences-and-series
edited Jan 3 at 12:26
Saad
19.9k92352
19.9k92352
asked Jan 3 at 12:18
Ice InkberryIce Inkberry
378112
378112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$1+dfrac1{n^2}+dfrac1{(n+1)^2}=dfrac{n^2+(n+1)^2+(n^2+n)^2}{n^2(n+1)^2}=dfrac{n^4+2n^3+3n^2+2n+1}{(n^2+n)^2}$$
$n^4+2n^3+3n^2+2n+1=(n^2)^2+2n^2cdot1+2ncdot1+(n)^2+1^2+2n^2cdot n=(n^2+n+1)^2$
Now $$dfrac{n^2+n+1}{n(n+1)}=1+dfrac1{n(n+1)}=1+dfrac{n+1-n}{n(n+1)}=?$$
See also: Telescoping series
$endgroup$
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060507%2fsum-of-series-sqrt1-frac1n2-frac1n12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$1+dfrac1{n^2}+dfrac1{(n+1)^2}=dfrac{n^2+(n+1)^2+(n^2+n)^2}{n^2(n+1)^2}=dfrac{n^4+2n^3+3n^2+2n+1}{(n^2+n)^2}$$
$n^4+2n^3+3n^2+2n+1=(n^2)^2+2n^2cdot1+2ncdot1+(n)^2+1^2+2n^2cdot n=(n^2+n+1)^2$
Now $$dfrac{n^2+n+1}{n(n+1)}=1+dfrac1{n(n+1)}=1+dfrac{n+1-n}{n(n+1)}=?$$
See also: Telescoping series
$endgroup$
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
add a comment |
$begingroup$
$$1+dfrac1{n^2}+dfrac1{(n+1)^2}=dfrac{n^2+(n+1)^2+(n^2+n)^2}{n^2(n+1)^2}=dfrac{n^4+2n^3+3n^2+2n+1}{(n^2+n)^2}$$
$n^4+2n^3+3n^2+2n+1=(n^2)^2+2n^2cdot1+2ncdot1+(n)^2+1^2+2n^2cdot n=(n^2+n+1)^2$
Now $$dfrac{n^2+n+1}{n(n+1)}=1+dfrac1{n(n+1)}=1+dfrac{n+1-n}{n(n+1)}=?$$
See also: Telescoping series
$endgroup$
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
add a comment |
$begingroup$
$$1+dfrac1{n^2}+dfrac1{(n+1)^2}=dfrac{n^2+(n+1)^2+(n^2+n)^2}{n^2(n+1)^2}=dfrac{n^4+2n^3+3n^2+2n+1}{(n^2+n)^2}$$
$n^4+2n^3+3n^2+2n+1=(n^2)^2+2n^2cdot1+2ncdot1+(n)^2+1^2+2n^2cdot n=(n^2+n+1)^2$
Now $$dfrac{n^2+n+1}{n(n+1)}=1+dfrac1{n(n+1)}=1+dfrac{n+1-n}{n(n+1)}=?$$
See also: Telescoping series
$endgroup$
$$1+dfrac1{n^2}+dfrac1{(n+1)^2}=dfrac{n^2+(n+1)^2+(n^2+n)^2}{n^2(n+1)^2}=dfrac{n^4+2n^3+3n^2+2n+1}{(n^2+n)^2}$$
$n^4+2n^3+3n^2+2n+1=(n^2)^2+2n^2cdot1+2ncdot1+(n)^2+1^2+2n^2cdot n=(n^2+n+1)^2$
Now $$dfrac{n^2+n+1}{n(n+1)}=1+dfrac1{n(n+1)}=1+dfrac{n+1-n}{n(n+1)}=?$$
See also: Telescoping series
answered Jan 3 at 12:25
lab bhattacharjeelab bhattacharjee
226k15158275
226k15158275
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
add a comment |
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
1
1
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
$begingroup$
$$left(1+dfrac1n-dfrac1{n+1}right)^2=1+dfrac1{n^2}+dfrac1{(n+1)^2}+dfrac2n-dfrac2{n+1}-dfrac2{n(n+1)}$$ $dfrac1n-dfrac1{n+1}-dfrac1{n(n+1)}=dfrac{n+1-n-1}{n(n+1)}=0$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:31
1
1
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
$begingroup$
$$left(dfrac1a+dfrac1b+dfrac1cright)^2=dfrac1{a^2}+dfrac1{b^2}+dfrac1{c^2}$$ will hold if $$a+b+c=0$$ Here $a=1,b=n,c=?$
$endgroup$
– lab bhattacharjee
Jan 3 at 12:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060507%2fsum-of-series-sqrt1-frac1n2-frac1n12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown