Consider the autonomus equation $frac{dy}{dt}=-2(y-1)(y-2)(y-a)^2$
$begingroup$
Consider the autonomus equation $frac{dy}{dt}=-2(y-1)(y-2)(y-a)^2$, where $a$ is any real number.
Then,
$(1)$ Plot the phase diagram showing the solution curves.
$(2)$ show that new solution can be generated from the old solutions (in $(a)$) by time shifting i.e, replacing $y(t)$ by $y(t-t_0)$.
Answer:
$(a)$ I have drawn the phase plot showing the solutions.
Please help me with the part $(b)$.
If we replace $y(t)$ by $y(t-t_0)$, then we have
$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$.
How to confirm that we get a new solution?
Help me
$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Consider the autonomus equation $frac{dy}{dt}=-2(y-1)(y-2)(y-a)^2$, where $a$ is any real number.
Then,
$(1)$ Plot the phase diagram showing the solution curves.
$(2)$ show that new solution can be generated from the old solutions (in $(a)$) by time shifting i.e, replacing $y(t)$ by $y(t-t_0)$.
Answer:
$(a)$ I have drawn the phase plot showing the solutions.
Please help me with the part $(b)$.
If we replace $y(t)$ by $y(t-t_0)$, then we have
$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$.
How to confirm that we get a new solution?
Help me
$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Consider the autonomus equation $frac{dy}{dt}=-2(y-1)(y-2)(y-a)^2$, where $a$ is any real number.
Then,
$(1)$ Plot the phase diagram showing the solution curves.
$(2)$ show that new solution can be generated from the old solutions (in $(a)$) by time shifting i.e, replacing $y(t)$ by $y(t-t_0)$.
Answer:
$(a)$ I have drawn the phase plot showing the solutions.
Please help me with the part $(b)$.
If we replace $y(t)$ by $y(t-t_0)$, then we have
$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$.
How to confirm that we get a new solution?
Help me
$
ordinary-differential-equations
$endgroup$
Consider the autonomus equation $frac{dy}{dt}=-2(y-1)(y-2)(y-a)^2$, where $a$ is any real number.
Then,
$(1)$ Plot the phase diagram showing the solution curves.
$(2)$ show that new solution can be generated from the old solutions (in $(a)$) by time shifting i.e, replacing $y(t)$ by $y(t-t_0)$.
Answer:
$(a)$ I have drawn the phase plot showing the solutions.
Please help me with the part $(b)$.
If we replace $y(t)$ by $y(t-t_0)$, then we have
$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$.
How to confirm that we get a new solution?
Help me
$
ordinary-differential-equations
ordinary-differential-equations
asked Jan 14 at 10:38
M. A. SARKARM. A. SARKAR
2,5021820
2,5021820
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$$
Change of variable : $quadtheta=t-t_0$ :
$$frac{dy(theta)}{dt}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
$dtheta=dt$
$$frac{dy(theta)}{dtheta}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
Thus $y(theta)$ is solution of the ODE.
Since $y(theta)=y(t-t_0)$ this proves that $y(t-t_0)$ is also solution.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073087%2fconsider-the-autonomus-equation-fracdydt-2y-1y-2y-a2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$$
Change of variable : $quadtheta=t-t_0$ :
$$frac{dy(theta)}{dt}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
$dtheta=dt$
$$frac{dy(theta)}{dtheta}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
Thus $y(theta)$ is solution of the ODE.
Since $y(theta)=y(t-t_0)$ this proves that $y(t-t_0)$ is also solution.
$endgroup$
add a comment |
$begingroup$
$$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$$
Change of variable : $quadtheta=t-t_0$ :
$$frac{dy(theta)}{dt}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
$dtheta=dt$
$$frac{dy(theta)}{dtheta}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
Thus $y(theta)$ is solution of the ODE.
Since $y(theta)=y(t-t_0)$ this proves that $y(t-t_0)$ is also solution.
$endgroup$
add a comment |
$begingroup$
$$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$$
Change of variable : $quadtheta=t-t_0$ :
$$frac{dy(theta)}{dt}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
$dtheta=dt$
$$frac{dy(theta)}{dtheta}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
Thus $y(theta)$ is solution of the ODE.
Since $y(theta)=y(t-t_0)$ this proves that $y(t-t_0)$ is also solution.
$endgroup$
$$frac{dy(t-t_0)}{dt}=-2(y(t-t_0)-1)(y(t-t_0)-2)(y(t-t_0)-a)^2$$
Change of variable : $quadtheta=t-t_0$ :
$$frac{dy(theta)}{dt}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
$dtheta=dt$
$$frac{dy(theta)}{dtheta}=-2(y(theta)-1)(y(theta)-2)(y(theta)-a)^2.$$
Thus $y(theta)$ is solution of the ODE.
Since $y(theta)=y(t-t_0)$ this proves that $y(t-t_0)$ is also solution.
answered Jan 16 at 18:59
JJacquelinJJacquelin
45.8k21858
45.8k21858
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073087%2fconsider-the-autonomus-equation-fracdydt-2y-1y-2y-a2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown