Evaluate $ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t$












0












$begingroup$


Problem



Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$



Attempt



Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}

Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    See also here.
    $endgroup$
    – mrtaurho
    Jan 14 at 10:45










  • $begingroup$
    With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
    $endgroup$
    – Zacky
    Jan 14 at 11:12












  • $begingroup$
    @Zacky. Decent is a very good word for this problem. Cheers :-)
    $endgroup$
    – Claude Leibovici
    Jan 14 at 11:27










  • $begingroup$
    @Zacky I'm not sure of that. WolframAlpha outputs the result here
    $endgroup$
    – mengdie1982
    Jan 14 at 11:30








  • 1




    $begingroup$
    Please include some context or background - where did the integral arise, and why is it of interest?
    $endgroup$
    – Carl Mummert
    Jan 14 at 12:07
















0












$begingroup$


Problem



Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$



Attempt



Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}

Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    See also here.
    $endgroup$
    – mrtaurho
    Jan 14 at 10:45










  • $begingroup$
    With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
    $endgroup$
    – Zacky
    Jan 14 at 11:12












  • $begingroup$
    @Zacky. Decent is a very good word for this problem. Cheers :-)
    $endgroup$
    – Claude Leibovici
    Jan 14 at 11:27










  • $begingroup$
    @Zacky I'm not sure of that. WolframAlpha outputs the result here
    $endgroup$
    – mengdie1982
    Jan 14 at 11:30








  • 1




    $begingroup$
    Please include some context or background - where did the integral arise, and why is it of interest?
    $endgroup$
    – Carl Mummert
    Jan 14 at 12:07














0












0








0


2



$begingroup$


Problem



Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$



Attempt



Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}

Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?










share|cite|improve this question











$endgroup$




Problem



Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$



Attempt



Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}

Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 12:48









Namaste

1




1










asked Jan 14 at 10:41









mengdie1982mengdie1982

5,052620




5,052620












  • $begingroup$
    See also here.
    $endgroup$
    – mrtaurho
    Jan 14 at 10:45










  • $begingroup$
    With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
    $endgroup$
    – Zacky
    Jan 14 at 11:12












  • $begingroup$
    @Zacky. Decent is a very good word for this problem. Cheers :-)
    $endgroup$
    – Claude Leibovici
    Jan 14 at 11:27










  • $begingroup$
    @Zacky I'm not sure of that. WolframAlpha outputs the result here
    $endgroup$
    – mengdie1982
    Jan 14 at 11:30








  • 1




    $begingroup$
    Please include some context or background - where did the integral arise, and why is it of interest?
    $endgroup$
    – Carl Mummert
    Jan 14 at 12:07


















  • $begingroup$
    See also here.
    $endgroup$
    – mrtaurho
    Jan 14 at 10:45










  • $begingroup$
    With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
    $endgroup$
    – Zacky
    Jan 14 at 11:12












  • $begingroup$
    @Zacky. Decent is a very good word for this problem. Cheers :-)
    $endgroup$
    – Claude Leibovici
    Jan 14 at 11:27










  • $begingroup$
    @Zacky I'm not sure of that. WolframAlpha outputs the result here
    $endgroup$
    – mengdie1982
    Jan 14 at 11:30








  • 1




    $begingroup$
    Please include some context or background - where did the integral arise, and why is it of interest?
    $endgroup$
    – Carl Mummert
    Jan 14 at 12:07
















$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45




$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45












$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12






$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12














$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27




$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27












$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30






$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30






1




1




$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07




$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073091%2fevaluate-int-0-frac-pi2-frac-sin8-t-cos8-t-sin-t-cos-t7-rm-d%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073091%2fevaluate-int-0-frac-pi2-frac-sin8-t-cos8-t-sin-t-cos-t7-rm-d%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna