Evaluate $ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t$
$begingroup$
Problem
Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$
Attempt
Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}
Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?
integration definite-integrals
$endgroup$
|
show 3 more comments
$begingroup$
Problem
Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$
Attempt
Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}
Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?
integration definite-integrals
$endgroup$
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
1
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07
|
show 3 more comments
$begingroup$
Problem
Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$
Attempt
Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}
Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?
integration definite-integrals
$endgroup$
Problem
Evaluate $$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t.$$
Attempt
Let $x:=dfrac{pi}{2}-t$. Then $t=dfrac{pi}{2}-x$ and ${rm d}t=-{rm d}x.$ Thus
begin{align*}
int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t&=-int_{frac{pi}{2}}^0dfrac{sin^8left(dfrac{pi}{2}-xright)}{sinleft(dfrac{pi}{2}-xright)+cosleft(dfrac{pi}{2}-xright)+7}{rm d}x\
&=int_0^{frac{pi}{2}}dfrac{cos^8 x}{cos x+sin x+7}{rm d}x.\
end{align*}
Therefore
$$ int_0^{frac{pi}{2}}frac{sin^8 t+cos^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{sin^8 t}{sin t+cos t+7}{rm d}t=2int_0^{frac{pi}{2}}frac{cos^8 t}{sin t+cos t+7}{rm d}t.$$
Can we go on from here?
integration definite-integrals
integration definite-integrals
edited Jan 15 at 12:48
Namaste
1
1
asked Jan 14 at 10:41
mengdie1982mengdie1982
5,052620
5,052620
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
1
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07
|
show 3 more comments
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
1
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
1
1
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07
|
show 3 more comments
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073091%2fevaluate-int-0-frac-pi2-frac-sin8-t-cos8-t-sin-t-cos-t7-rm-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073091%2fevaluate-int-0-frac-pi2-frac-sin8-t-cos8-t-sin-t-cos-t7-rm-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See also here.
$endgroup$
– mrtaurho
Jan 14 at 10:45
$begingroup$
With $tan t =x$ we get: $$2int_0^infty frac{x^8}{(1+x^2)^5}frac{1}{7+frac{x+1}{sqrt{x^2+1}}}dx$$ Is there a reason to expect this to have a decent closed form?
$endgroup$
– Zacky
Jan 14 at 11:12
$begingroup$
@Zacky. Decent is a very good word for this problem. Cheers :-)
$endgroup$
– Claude Leibovici
Jan 14 at 11:27
$begingroup$
@Zacky I'm not sure of that. WolframAlpha outputs the result here
$endgroup$
– mengdie1982
Jan 14 at 11:30
1
$begingroup$
Please include some context or background - where did the integral arise, and why is it of interest?
$endgroup$
– Carl Mummert
Jan 14 at 12:07