$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$ evaluation using...












2












$begingroup$


$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
This is the limit which I got from the book of Joseph Edwards' Differential Calculus for Beginners the second exercise of the First Chapter Page -10 question number 19. Whose Answer was given as $frac 1 2$.



So my try was as follows:
$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
$$Rightarrow lim limits _{x rightarrow 0} [ frac{x^3(1 + frac{x^4}{4} + frac{x^8}{32}...) - (x^2 - frac{x^6}{3!} + frac{x^{10}}{5!}...)^{frac 3 2} }{x^7} ]$$



Now, this is the quite a big problem, as we can see that sine expansion series has the power $frac 3 2$ which is nearly impossible to evaluate.



The expansion series given in the book are: $(1+x)^n$ and $(1-x)^{-n}$ which are not useful here as there are infinite series where those are 2-terms.



Please anyone help me , I've just started Calculus :P










share|cite|improve this question









$endgroup$












  • $begingroup$
    Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:12












  • $begingroup$
    @ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:15










  • $begingroup$
    Group terms into a lump and use the classical binomial expansion.
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:18










  • $begingroup$
    @ClaudeLeibovici Can you show by grouping a few terms?
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:25






  • 1




    $begingroup$
    Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:48
















2












$begingroup$


$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
This is the limit which I got from the book of Joseph Edwards' Differential Calculus for Beginners the second exercise of the First Chapter Page -10 question number 19. Whose Answer was given as $frac 1 2$.



So my try was as follows:
$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
$$Rightarrow lim limits _{x rightarrow 0} [ frac{x^3(1 + frac{x^4}{4} + frac{x^8}{32}...) - (x^2 - frac{x^6}{3!} + frac{x^{10}}{5!}...)^{frac 3 2} }{x^7} ]$$



Now, this is the quite a big problem, as we can see that sine expansion series has the power $frac 3 2$ which is nearly impossible to evaluate.



The expansion series given in the book are: $(1+x)^n$ and $(1-x)^{-n}$ which are not useful here as there are infinite series where those are 2-terms.



Please anyone help me , I've just started Calculus :P










share|cite|improve this question









$endgroup$












  • $begingroup$
    Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:12












  • $begingroup$
    @ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:15










  • $begingroup$
    Group terms into a lump and use the classical binomial expansion.
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:18










  • $begingroup$
    @ClaudeLeibovici Can you show by grouping a few terms?
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:25






  • 1




    $begingroup$
    Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:48














2












2








2





$begingroup$


$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
This is the limit which I got from the book of Joseph Edwards' Differential Calculus for Beginners the second exercise of the First Chapter Page -10 question number 19. Whose Answer was given as $frac 1 2$.



So my try was as follows:
$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
$$Rightarrow lim limits _{x rightarrow 0} [ frac{x^3(1 + frac{x^4}{4} + frac{x^8}{32}...) - (x^2 - frac{x^6}{3!} + frac{x^{10}}{5!}...)^{frac 3 2} }{x^7} ]$$



Now, this is the quite a big problem, as we can see that sine expansion series has the power $frac 3 2$ which is nearly impossible to evaluate.



The expansion series given in the book are: $(1+x)^n$ and $(1-x)^{-n}$ which are not useful here as there are infinite series where those are 2-terms.



Please anyone help me , I've just started Calculus :P










share|cite|improve this question









$endgroup$




$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
This is the limit which I got from the book of Joseph Edwards' Differential Calculus for Beginners the second exercise of the First Chapter Page -10 question number 19. Whose Answer was given as $frac 1 2$.



So my try was as follows:
$$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}$$
$$Rightarrow lim limits _{x rightarrow 0} [ frac{x^3(1 + frac{x^4}{4} + frac{x^8}{32}...) - (x^2 - frac{x^6}{3!} + frac{x^{10}}{5!}...)^{frac 3 2} }{x^7} ]$$



Now, this is the quite a big problem, as we can see that sine expansion series has the power $frac 3 2$ which is nearly impossible to evaluate.



The expansion series given in the book are: $(1+x)^n$ and $(1-x)^{-n}$ which are not useful here as there are infinite series where those are 2-terms.



Please anyone help me , I've just started Calculus :P







calculus limits limits-without-lhopital






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 14 at 10:06









Abhas Kumar SinhaAbhas Kumar Sinha

304215




304215












  • $begingroup$
    Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:12












  • $begingroup$
    @ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:15










  • $begingroup$
    Group terms into a lump and use the classical binomial expansion.
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:18










  • $begingroup$
    @ClaudeLeibovici Can you show by grouping a few terms?
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:25






  • 1




    $begingroup$
    Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:48


















  • $begingroup$
    Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:12












  • $begingroup$
    @ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:15










  • $begingroup$
    Group terms into a lump and use the classical binomial expansion.
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:18










  • $begingroup$
    @ClaudeLeibovici Can you show by grouping a few terms?
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:25






  • 1




    $begingroup$
    Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
    $endgroup$
    – Claude Leibovici
    Jan 14 at 10:48
















$begingroup$
Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
$endgroup$
– Claude Leibovici
Jan 14 at 10:12






$begingroup$
Generalized binomial expansion is the way to go just as for $sqrt{1+x}$
$endgroup$
– Claude Leibovici
Jan 14 at 10:12














$begingroup$
@ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:15




$begingroup$
@ClaudeLeibovici I don't know Binomial Expansion for infinite series in the book nor there is one If I know, because Binomial stands for 2 terms but there are infinite terms, so any help here is appreciated!
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:15












$begingroup$
Group terms into a lump and use the classical binomial expansion.
$endgroup$
– Claude Leibovici
Jan 14 at 10:18




$begingroup$
Group terms into a lump and use the classical binomial expansion.
$endgroup$
– Claude Leibovici
Jan 14 at 10:18












$begingroup$
@ClaudeLeibovici Can you show by grouping a few terms?
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:25




$begingroup$
@ClaudeLeibovici Can you show by grouping a few terms?
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:25




1




1




$begingroup$
Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
$endgroup$
– Claude Leibovici
Jan 14 at 10:48




$begingroup$
Consider $sqrt{1+x+x^2+x^3}$. Let $t=x+x^2+x^3$ So expand $sqrt{1+t}$. When done, replace in the result $t$ by $x+x^2+x^3$
$endgroup$
– Claude Leibovici
Jan 14 at 10:48










2 Answers
2






active

oldest

votes


















2












$begingroup$

You are on the right track. By using little-o notation you may control the expansions in a better way. We have that as $xto 0^+$,
$$frac{x^3(1 + frac{x^4}{4} + o(x^4)) - (x^2 - frac{x^6}{3!} + o(x^6))^{frac 3 2} }{x^7}=frac{1 + frac{x^4}{4} + o(x^4) - (1 - frac{x^4}{3!} + o(x^4))^{frac 3 2} }{x^4}$$
Now all you need is that $(1+t)^{3/2}=1+frac{3t}{2}+o(t)$ this can be shown by verifying that,
$$lim_{tto 0}frac{(1+t)^{3/2}-1}{t}=
lim_{tto 0}frac{(1+t)^{3}-1}{t((1+t)^{3/2}+1)}=lim_{tto 0}frac{3+o(1)}{((1+t)^{3/2}+1}=frac{3}{2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I don't want to use L'Hospital, for exam-related purposes :3 XD :P
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:27










  • $begingroup$
    I see. Read my edit for an alternative approach.
    $endgroup$
    – Robert Z
    Jan 14 at 10:31



















1












$begingroup$

We have $$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}{=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} - left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1+1- left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}+lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}}$$the latter equality is true since $lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}={1over 4}$ is bounded. It remains to show that $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}={1over 4}$$This is straight forward since $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}{=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}\=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}{1 + left({sin uover u}right)^{3over 2} over 1 + left({sin uover u}right)^{3over 2} }\={1over 2}lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-sin^3 u }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-left(u-{u^3over 6}right)^3 }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{1-left(1-{u^2over 6}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{{u^2over 6}left(1+left(1-{u^2over 6}right)+left(1-{u^2over 6}right)^2right) }{u^2}\={1over 2}lim_{uto 0}{{3u^2over 6}over u^2}\={1over 4}}$$hence the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But, the answer is $frac 12$
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:43












  • $begingroup$
    Sorry. You were right :)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 10:57










  • $begingroup$
    That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:03










  • $begingroup$
    Can you suggest some good books for Limits Btw...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:04










  • $begingroup$
    Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 14:32












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073052%2flim-limits-x-rightarrow-0-fracx3-e-frac-x44-sin-frac-3-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

You are on the right track. By using little-o notation you may control the expansions in a better way. We have that as $xto 0^+$,
$$frac{x^3(1 + frac{x^4}{4} + o(x^4)) - (x^2 - frac{x^6}{3!} + o(x^6))^{frac 3 2} }{x^7}=frac{1 + frac{x^4}{4} + o(x^4) - (1 - frac{x^4}{3!} + o(x^4))^{frac 3 2} }{x^4}$$
Now all you need is that $(1+t)^{3/2}=1+frac{3t}{2}+o(t)$ this can be shown by verifying that,
$$lim_{tto 0}frac{(1+t)^{3/2}-1}{t}=
lim_{tto 0}frac{(1+t)^{3}-1}{t((1+t)^{3/2}+1)}=lim_{tto 0}frac{3+o(1)}{((1+t)^{3/2}+1}=frac{3}{2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I don't want to use L'Hospital, for exam-related purposes :3 XD :P
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:27










  • $begingroup$
    I see. Read my edit for an alternative approach.
    $endgroup$
    – Robert Z
    Jan 14 at 10:31
















2












$begingroup$

You are on the right track. By using little-o notation you may control the expansions in a better way. We have that as $xto 0^+$,
$$frac{x^3(1 + frac{x^4}{4} + o(x^4)) - (x^2 - frac{x^6}{3!} + o(x^6))^{frac 3 2} }{x^7}=frac{1 + frac{x^4}{4} + o(x^4) - (1 - frac{x^4}{3!} + o(x^4))^{frac 3 2} }{x^4}$$
Now all you need is that $(1+t)^{3/2}=1+frac{3t}{2}+o(t)$ this can be shown by verifying that,
$$lim_{tto 0}frac{(1+t)^{3/2}-1}{t}=
lim_{tto 0}frac{(1+t)^{3}-1}{t((1+t)^{3/2}+1)}=lim_{tto 0}frac{3+o(1)}{((1+t)^{3/2}+1}=frac{3}{2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I don't want to use L'Hospital, for exam-related purposes :3 XD :P
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:27










  • $begingroup$
    I see. Read my edit for an alternative approach.
    $endgroup$
    – Robert Z
    Jan 14 at 10:31














2












2








2





$begingroup$

You are on the right track. By using little-o notation you may control the expansions in a better way. We have that as $xto 0^+$,
$$frac{x^3(1 + frac{x^4}{4} + o(x^4)) - (x^2 - frac{x^6}{3!} + o(x^6))^{frac 3 2} }{x^7}=frac{1 + frac{x^4}{4} + o(x^4) - (1 - frac{x^4}{3!} + o(x^4))^{frac 3 2} }{x^4}$$
Now all you need is that $(1+t)^{3/2}=1+frac{3t}{2}+o(t)$ this can be shown by verifying that,
$$lim_{tto 0}frac{(1+t)^{3/2}-1}{t}=
lim_{tto 0}frac{(1+t)^{3}-1}{t((1+t)^{3/2}+1)}=lim_{tto 0}frac{3+o(1)}{((1+t)^{3/2}+1}=frac{3}{2}.$$






share|cite|improve this answer











$endgroup$



You are on the right track. By using little-o notation you may control the expansions in a better way. We have that as $xto 0^+$,
$$frac{x^3(1 + frac{x^4}{4} + o(x^4)) - (x^2 - frac{x^6}{3!} + o(x^6))^{frac 3 2} }{x^7}=frac{1 + frac{x^4}{4} + o(x^4) - (1 - frac{x^4}{3!} + o(x^4))^{frac 3 2} }{x^4}$$
Now all you need is that $(1+t)^{3/2}=1+frac{3t}{2}+o(t)$ this can be shown by verifying that,
$$lim_{tto 0}frac{(1+t)^{3/2}-1}{t}=
lim_{tto 0}frac{(1+t)^{3}-1}{t((1+t)^{3/2}+1)}=lim_{tto 0}frac{3+o(1)}{((1+t)^{3/2}+1}=frac{3}{2}.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 14 at 10:29

























answered Jan 14 at 10:20









Robert ZRobert Z

102k1072145




102k1072145












  • $begingroup$
    I don't want to use L'Hospital, for exam-related purposes :3 XD :P
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:27










  • $begingroup$
    I see. Read my edit for an alternative approach.
    $endgroup$
    – Robert Z
    Jan 14 at 10:31


















  • $begingroup$
    I don't want to use L'Hospital, for exam-related purposes :3 XD :P
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:27










  • $begingroup$
    I see. Read my edit for an alternative approach.
    $endgroup$
    – Robert Z
    Jan 14 at 10:31
















$begingroup$
I don't want to use L'Hospital, for exam-related purposes :3 XD :P
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:27




$begingroup$
I don't want to use L'Hospital, for exam-related purposes :3 XD :P
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:27












$begingroup$
I see. Read my edit for an alternative approach.
$endgroup$
– Robert Z
Jan 14 at 10:31




$begingroup$
I see. Read my edit for an alternative approach.
$endgroup$
– Robert Z
Jan 14 at 10:31











1












$begingroup$

We have $$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}{=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} - left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1+1- left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}+lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}}$$the latter equality is true since $lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}={1over 4}$ is bounded. It remains to show that $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}={1over 4}$$This is straight forward since $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}{=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}\=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}{1 + left({sin uover u}right)^{3over 2} over 1 + left({sin uover u}right)^{3over 2} }\={1over 2}lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-sin^3 u }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-left(u-{u^3over 6}right)^3 }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{1-left(1-{u^2over 6}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{{u^2over 6}left(1+left(1-{u^2over 6}right)+left(1-{u^2over 6}right)^2right) }{u^2}\={1over 2}lim_{uto 0}{{3u^2over 6}over u^2}\={1over 4}}$$hence the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But, the answer is $frac 12$
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:43












  • $begingroup$
    Sorry. You were right :)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 10:57










  • $begingroup$
    That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:03










  • $begingroup$
    Can you suggest some good books for Limits Btw...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:04










  • $begingroup$
    Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 14:32
















1












$begingroup$

We have $$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}{=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} - left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1+1- left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}+lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}}$$the latter equality is true since $lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}={1over 4}$ is bounded. It remains to show that $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}={1over 4}$$This is straight forward since $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}{=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}\=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}{1 + left({sin uover u}right)^{3over 2} over 1 + left({sin uover u}right)^{3over 2} }\={1over 2}lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-sin^3 u }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-left(u-{u^3over 6}right)^3 }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{1-left(1-{u^2over 6}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{{u^2over 6}left(1+left(1-{u^2over 6}right)+left(1-{u^2over 6}right)^2right) }{u^2}\={1over 2}lim_{uto 0}{{3u^2over 6}over u^2}\={1over 4}}$$hence the result.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But, the answer is $frac 12$
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:43












  • $begingroup$
    Sorry. You were right :)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 10:57










  • $begingroup$
    That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:03










  • $begingroup$
    Can you suggest some good books for Limits Btw...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:04










  • $begingroup$
    Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 14:32














1












1








1





$begingroup$

We have $$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}{=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} - left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1+1- left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}+lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}}$$the latter equality is true since $lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}={1over 4}$ is bounded. It remains to show that $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}={1over 4}$$This is straight forward since $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}{=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}\=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}{1 + left({sin uover u}right)^{3over 2} over 1 + left({sin uover u}right)^{3over 2} }\={1over 2}lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-sin^3 u }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-left(u-{u^3over 6}right)^3 }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{1-left(1-{u^2over 6}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{{u^2over 6}left(1+left(1-{u^2over 6}right)+left(1-{u^2over 6}right)^2right) }{u^2}\={1over 2}lim_{uto 0}{{3u^2over 6}over u^2}\={1over 4}}$$hence the result.






share|cite|improve this answer











$endgroup$



We have $$lim limits _{x rightarrow 0} frac{x^3 e^{frac {x^4}{4}} - {sin^{frac 3 2} {x^2}} }{x^7}{=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} - left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1+1- left({sin x^2over x^2}right)^{3over 2} }{x^4}\=lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}+lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}}$$the latter equality is true since $lim limits _{x rightarrow 0} frac{e^{frac {x^4}{4}} -1 }{x^4}={1over 4}$ is bounded. It remains to show that $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}={1over 4}$$This is straight forward since $$lim limits _{x rightarrow 0} frac{1 - left({sin x^2over x^2}right)^{3over 2} }{x^4}{=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}\=lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^{3over 2} }{u^2}{1 + left({sin uover u}right)^{3over 2} over 1 + left({sin uover u}right)^{3over 2} }\={1over 2}lim limits _{u rightarrow 0} frac{1 - left({sin uover u}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-sin^3 u }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{u^3-left(u-{u^3over 6}right)^3 }{u^5}\={1over 2}lim limits _{u rightarrow 0} frac{1-left(1-{u^2over 6}right)^3 }{u^2}\={1over 2}lim limits _{u rightarrow 0} frac{{u^2over 6}left(1+left(1-{u^2over 6}right)+left(1-{u^2over 6}right)^2right) }{u^2}\={1over 2}lim_{uto 0}{{3u^2over 6}over u^2}\={1over 4}}$$hence the result.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 14 at 10:56

























answered Jan 14 at 10:41









Mostafa AyazMostafa Ayaz

18.1k31040




18.1k31040












  • $begingroup$
    But, the answer is $frac 12$
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:43












  • $begingroup$
    Sorry. You were right :)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 10:57










  • $begingroup$
    That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:03










  • $begingroup$
    Can you suggest some good books for Limits Btw...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:04










  • $begingroup$
    Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 14:32


















  • $begingroup$
    But, the answer is $frac 12$
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 10:43












  • $begingroup$
    Sorry. You were right :)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 10:57










  • $begingroup$
    That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:03










  • $begingroup$
    Can you suggest some good books for Limits Btw...
    $endgroup$
    – Abhas Kumar Sinha
    Jan 14 at 11:04










  • $begingroup$
    Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
    $endgroup$
    – Mostafa Ayaz
    Jan 14 at 14:32
















$begingroup$
But, the answer is $frac 12$
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:43






$begingroup$
But, the answer is $frac 12$
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 10:43














$begingroup$
Sorry. You were right :)
$endgroup$
– Mostafa Ayaz
Jan 14 at 10:57




$begingroup$
Sorry. You were right :)
$endgroup$
– Mostafa Ayaz
Jan 14 at 10:57












$begingroup$
That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 11:03




$begingroup$
That's Great, I was thought this was not possible without expansion, you made things go next level.... Awesome answer anyways...
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 11:03












$begingroup$
Can you suggest some good books for Limits Btw...
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 11:04




$begingroup$
Can you suggest some good books for Limits Btw...
$endgroup$
– Abhas Kumar Sinha
Jan 14 at 11:04












$begingroup$
Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
$endgroup$
– Mostafa Ayaz
Jan 14 at 14:32




$begingroup$
Thank you so much. I can suggest you amazon.com/Calculus-7th-James-Stewart/dp/0538497815 . I'm not sure whether this or another version of it contains some discussions on limits (I have long before passed the courses :) and I can't remember the references)
$endgroup$
– Mostafa Ayaz
Jan 14 at 14:32


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073052%2flim-limits-x-rightarrow-0-fracx3-e-frac-x44-sin-frac-3-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna