If $f(x,y)>0$ for almost all $(x,y)$, can we conclude that $min(f(x,y),f(y,x))>0$ for almost all...












0












$begingroup$


Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$




Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$




It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$




    Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$




    It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$




      Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$




      It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.










      share|cite|improve this question









      $endgroup$




      Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$




      Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$




      It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.







      real-analysis measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 15 at 10:42









      0xbadf00d0xbadf00d

      1,59341534




      1,59341534






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.



          And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why is $N'$ a null set?
            $endgroup$
            – 0xbadf00d
            Jan 15 at 11:56








          • 1




            $begingroup$
            Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
            $endgroup$
            – drhab
            Jan 15 at 12:00












          • $begingroup$
            Sure, trivial. Thank you.
            $endgroup$
            – 0xbadf00d
            Jan 15 at 12:05










          • $begingroup$
            You are welcome.
            $endgroup$
            – drhab
            Jan 15 at 12:06












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074300%2fif-fx-y0-for-almost-all-x-y-can-we-conclude-that-minfx-y-fy-x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.



          And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why is $N'$ a null set?
            $endgroup$
            – 0xbadf00d
            Jan 15 at 11:56








          • 1




            $begingroup$
            Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
            $endgroup$
            – drhab
            Jan 15 at 12:00












          • $begingroup$
            Sure, trivial. Thank you.
            $endgroup$
            – 0xbadf00d
            Jan 15 at 12:05










          • $begingroup$
            You are welcome.
            $endgroup$
            – drhab
            Jan 15 at 12:06
















          1












          $begingroup$

          If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.



          And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Why is $N'$ a null set?
            $endgroup$
            – 0xbadf00d
            Jan 15 at 11:56








          • 1




            $begingroup$
            Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
            $endgroup$
            – drhab
            Jan 15 at 12:00












          • $begingroup$
            Sure, trivial. Thank you.
            $endgroup$
            – 0xbadf00d
            Jan 15 at 12:05










          • $begingroup$
            You are welcome.
            $endgroup$
            – drhab
            Jan 15 at 12:06














          1












          1








          1





          $begingroup$

          If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.



          And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$






          share|cite|improve this answer









          $endgroup$



          If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.



          And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 15 at 10:51









          drhabdrhab

          104k545136




          104k545136












          • $begingroup$
            Why is $N'$ a null set?
            $endgroup$
            – 0xbadf00d
            Jan 15 at 11:56








          • 1




            $begingroup$
            Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
            $endgroup$
            – drhab
            Jan 15 at 12:00












          • $begingroup$
            Sure, trivial. Thank you.
            $endgroup$
            – 0xbadf00d
            Jan 15 at 12:05










          • $begingroup$
            You are welcome.
            $endgroup$
            – drhab
            Jan 15 at 12:06


















          • $begingroup$
            Why is $N'$ a null set?
            $endgroup$
            – 0xbadf00d
            Jan 15 at 11:56








          • 1




            $begingroup$
            Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
            $endgroup$
            – drhab
            Jan 15 at 12:00












          • $begingroup$
            Sure, trivial. Thank you.
            $endgroup$
            – 0xbadf00d
            Jan 15 at 12:05










          • $begingroup$
            You are welcome.
            $endgroup$
            – drhab
            Jan 15 at 12:06
















          $begingroup$
          Why is $N'$ a null set?
          $endgroup$
          – 0xbadf00d
          Jan 15 at 11:56






          $begingroup$
          Why is $N'$ a null set?
          $endgroup$
          – 0xbadf00d
          Jan 15 at 11:56






          1




          1




          $begingroup$
          Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
          $endgroup$
          – drhab
          Jan 15 at 12:00






          $begingroup$
          Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
          $endgroup$
          – drhab
          Jan 15 at 12:00














          $begingroup$
          Sure, trivial. Thank you.
          $endgroup$
          – 0xbadf00d
          Jan 15 at 12:05




          $begingroup$
          Sure, trivial. Thank you.
          $endgroup$
          – 0xbadf00d
          Jan 15 at 12:05












          $begingroup$
          You are welcome.
          $endgroup$
          – drhab
          Jan 15 at 12:06




          $begingroup$
          You are welcome.
          $endgroup$
          – drhab
          Jan 15 at 12:06


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074300%2fif-fx-y0-for-almost-all-x-y-can-we-conclude-that-minfx-y-fy-x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna