If $f(x,y)>0$ for almost all $(x,y)$, can we conclude that $min(f(x,y),f(y,x))>0$ for almost all...
$begingroup$
Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$
Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$
It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$
Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$
It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.
real-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$
Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$
It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.
real-analysis measure-theory
$endgroup$
Let $(E,mathcal E,mu)$ be a measure space and $f:E^2to[0,infty)$ be $mathcal E^{otimes2}$-measurable with $$f(x,y)>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2.tag1$$
Are we able to conclude that $$g(x,y):=min(f(x,y),f(y,x))>0;;;text{for }mu^{otimes2}text{-almost all }(x,y)in E^2text?tag2$$
It would be trivial, if we would have $$f(x,y)>0;;;text{for }mutext{-almost all }x,yin Etag{1'}$$ instead of $(1)$, but with $(1)$ I'm unsure how we need to argue. The problem is that by assumption there is a $mu^{otimes2}$-null set $N$ with $f(x,y)>0$ for all $(x,y)in E^2setminus N$, but $(x,y)in E^2setminus N$ doesn't imply $(y,x)in E^2setminus N$.
real-analysis measure-theory
real-analysis measure-theory
asked Jan 15 at 10:42
0xbadf00d0xbadf00d
1,59341534
1,59341534
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.
And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$
$endgroup$
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074300%2fif-fx-y0-for-almost-all-x-y-can-we-conclude-that-minfx-y-fy-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.
And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$
$endgroup$
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
add a comment |
$begingroup$
If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.
And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$
$endgroup$
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
add a comment |
$begingroup$
If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.
And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$
$endgroup$
If $N$ is a $mu^{otimes2}$-null set then so are $N'={(y,x)mid (x,y)in N}$ (by symmetry) and $M=Ncup N'$.
And if: $$f(x,y)leq 0implies (x,y)in N$$ then: $$f(y,x)leq 0implies (x,y)in N'$$ and: $$g(x,y)=min(f(x,y),f(y,x))leq0implies (x,y)in M$$
answered Jan 15 at 10:51
drhabdrhab
104k545136
104k545136
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
add a comment |
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
$begingroup$
Why is $N'$ a null set?
$endgroup$
– 0xbadf00d
Jan 15 at 11:56
1
1
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Because $(muotimesmu)(N)=(muotimesmu)(N')$ by symmetry. We have $(muotimesmu)(Atimes B)=mu(A)mu(B)=mu(B)mu(A)=(muotimesmu)(Btimes A)$. This can be extended to $(muotimesmu)(N)=(muotimesmu)(N')$ where $N'={(y,x)mid (x,y)in N}$.
$endgroup$
– drhab
Jan 15 at 12:00
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
Sure, trivial. Thank you.
$endgroup$
– 0xbadf00d
Jan 15 at 12:05
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
$begingroup$
You are welcome.
$endgroup$
– drhab
Jan 15 at 12:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074300%2fif-fx-y0-for-almost-all-x-y-can-we-conclude-that-minfx-y-fy-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown