Is there always a positive integer $a$ such that both $a^2-4$ and $a^2+4$ are quadratic non-residues $bmod...












4












$begingroup$


I would like to prove (disprove if wrong) the following statement:




For all odd prime numbers except for $p=3,5$ or $13$, there exists an
integer $a>0$ such that both $a^2-4$ and $a^2+4$ are quadratic
non-residue $bmod p$.




Here is what I have done: suppose that $p notin {3,5,13}$ and consider different cases:



Case I: $p equiv 3 bmod 4$. We have $q$ is quadratic residue (QR) iff $-q$ is quadratic non-residue (QNR).



Since $p neq 5$, then either $5$ is QNR (case I-i) or $5$ is QR (case I-ii).



In case (I-i) there exists $b$ such that $b^2 equiv -5 bmod p$ and obviously $-b^2+4 equiv 3^2 bmod p$ and $-b^2-4 equiv 1 bmod p$, then both $b^2-4$ and $b^2+4$ are QNR. It suffices to take $a=b$.



Consider now case (I-ii). Since $p neq 13$, then either



(I-ii-1) $13$ is quadratic non-residue (QNR) mod $p$



(I-ii-2) $13$ is quadratic residue (QR) mod $p$



In case (I-ii-1), $65=5cdot 13$ is QNR and there exists $c$ such that $c^2 equiv -65 bmod p$ and obviously $-c^2-16 equiv 7^2 bmod p$ and $-c^2+16 equiv 9^2 bmod p$.



Let $d=frac{c}{2}$, $e=frac{7}{2}$ and $f=frac{9}{2}$ in $ mathbb{Z}/pmathbb{Z}$.



Then $-d^2-4 equiv e^2 bmod p$ and $-d^2+4 equiv f^2 bmod p$ and both $d^2+4$ and $d^2-4$ are QNR. It suffices to take $a=d$.



In the case (I-ii-2) where both $5$ and $13$ are QR, I don't see how to proceed.



In the case (II) where $p equiv 1 bmod 4$, we have $q$ is quadratic residue (QR) iff $-q$ is quadratic residue (QNR) and here again the above method does not seem to work.



I am also interested in any sharp upper bound for the smallest $a$, in terms of $p$.



Thanks for help.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
    $endgroup$
    – Gerry Myerson
    Jan 13 at 1:54










  • $begingroup$
    @Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
    $endgroup$
    – René Gy
    Jan 13 at 9:20
















4












$begingroup$


I would like to prove (disprove if wrong) the following statement:




For all odd prime numbers except for $p=3,5$ or $13$, there exists an
integer $a>0$ such that both $a^2-4$ and $a^2+4$ are quadratic
non-residue $bmod p$.




Here is what I have done: suppose that $p notin {3,5,13}$ and consider different cases:



Case I: $p equiv 3 bmod 4$. We have $q$ is quadratic residue (QR) iff $-q$ is quadratic non-residue (QNR).



Since $p neq 5$, then either $5$ is QNR (case I-i) or $5$ is QR (case I-ii).



In case (I-i) there exists $b$ such that $b^2 equiv -5 bmod p$ and obviously $-b^2+4 equiv 3^2 bmod p$ and $-b^2-4 equiv 1 bmod p$, then both $b^2-4$ and $b^2+4$ are QNR. It suffices to take $a=b$.



Consider now case (I-ii). Since $p neq 13$, then either



(I-ii-1) $13$ is quadratic non-residue (QNR) mod $p$



(I-ii-2) $13$ is quadratic residue (QR) mod $p$



In case (I-ii-1), $65=5cdot 13$ is QNR and there exists $c$ such that $c^2 equiv -65 bmod p$ and obviously $-c^2-16 equiv 7^2 bmod p$ and $-c^2+16 equiv 9^2 bmod p$.



Let $d=frac{c}{2}$, $e=frac{7}{2}$ and $f=frac{9}{2}$ in $ mathbb{Z}/pmathbb{Z}$.



Then $-d^2-4 equiv e^2 bmod p$ and $-d^2+4 equiv f^2 bmod p$ and both $d^2+4$ and $d^2-4$ are QNR. It suffices to take $a=d$.



In the case (I-ii-2) where both $5$ and $13$ are QR, I don't see how to proceed.



In the case (II) where $p equiv 1 bmod 4$, we have $q$ is quadratic residue (QR) iff $-q$ is quadratic residue (QNR) and here again the above method does not seem to work.



I am also interested in any sharp upper bound for the smallest $a$, in terms of $p$.



Thanks for help.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
    $endgroup$
    – Gerry Myerson
    Jan 13 at 1:54










  • $begingroup$
    @Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
    $endgroup$
    – René Gy
    Jan 13 at 9:20














4












4








4


2



$begingroup$


I would like to prove (disprove if wrong) the following statement:




For all odd prime numbers except for $p=3,5$ or $13$, there exists an
integer $a>0$ such that both $a^2-4$ and $a^2+4$ are quadratic
non-residue $bmod p$.




Here is what I have done: suppose that $p notin {3,5,13}$ and consider different cases:



Case I: $p equiv 3 bmod 4$. We have $q$ is quadratic residue (QR) iff $-q$ is quadratic non-residue (QNR).



Since $p neq 5$, then either $5$ is QNR (case I-i) or $5$ is QR (case I-ii).



In case (I-i) there exists $b$ such that $b^2 equiv -5 bmod p$ and obviously $-b^2+4 equiv 3^2 bmod p$ and $-b^2-4 equiv 1 bmod p$, then both $b^2-4$ and $b^2+4$ are QNR. It suffices to take $a=b$.



Consider now case (I-ii). Since $p neq 13$, then either



(I-ii-1) $13$ is quadratic non-residue (QNR) mod $p$



(I-ii-2) $13$ is quadratic residue (QR) mod $p$



In case (I-ii-1), $65=5cdot 13$ is QNR and there exists $c$ such that $c^2 equiv -65 bmod p$ and obviously $-c^2-16 equiv 7^2 bmod p$ and $-c^2+16 equiv 9^2 bmod p$.



Let $d=frac{c}{2}$, $e=frac{7}{2}$ and $f=frac{9}{2}$ in $ mathbb{Z}/pmathbb{Z}$.



Then $-d^2-4 equiv e^2 bmod p$ and $-d^2+4 equiv f^2 bmod p$ and both $d^2+4$ and $d^2-4$ are QNR. It suffices to take $a=d$.



In the case (I-ii-2) where both $5$ and $13$ are QR, I don't see how to proceed.



In the case (II) where $p equiv 1 bmod 4$, we have $q$ is quadratic residue (QR) iff $-q$ is quadratic residue (QNR) and here again the above method does not seem to work.



I am also interested in any sharp upper bound for the smallest $a$, in terms of $p$.



Thanks for help.










share|cite|improve this question









$endgroup$




I would like to prove (disprove if wrong) the following statement:




For all odd prime numbers except for $p=3,5$ or $13$, there exists an
integer $a>0$ such that both $a^2-4$ and $a^2+4$ are quadratic
non-residue $bmod p$.




Here is what I have done: suppose that $p notin {3,5,13}$ and consider different cases:



Case I: $p equiv 3 bmod 4$. We have $q$ is quadratic residue (QR) iff $-q$ is quadratic non-residue (QNR).



Since $p neq 5$, then either $5$ is QNR (case I-i) or $5$ is QR (case I-ii).



In case (I-i) there exists $b$ such that $b^2 equiv -5 bmod p$ and obviously $-b^2+4 equiv 3^2 bmod p$ and $-b^2-4 equiv 1 bmod p$, then both $b^2-4$ and $b^2+4$ are QNR. It suffices to take $a=b$.



Consider now case (I-ii). Since $p neq 13$, then either



(I-ii-1) $13$ is quadratic non-residue (QNR) mod $p$



(I-ii-2) $13$ is quadratic residue (QR) mod $p$



In case (I-ii-1), $65=5cdot 13$ is QNR and there exists $c$ such that $c^2 equiv -65 bmod p$ and obviously $-c^2-16 equiv 7^2 bmod p$ and $-c^2+16 equiv 9^2 bmod p$.



Let $d=frac{c}{2}$, $e=frac{7}{2}$ and $f=frac{9}{2}$ in $ mathbb{Z}/pmathbb{Z}$.



Then $-d^2-4 equiv e^2 bmod p$ and $-d^2+4 equiv f^2 bmod p$ and both $d^2+4$ and $d^2-4$ are QNR. It suffices to take $a=d$.



In the case (I-ii-2) where both $5$ and $13$ are QR, I don't see how to proceed.



In the case (II) where $p equiv 1 bmod 4$, we have $q$ is quadratic residue (QR) iff $-q$ is quadratic residue (QNR) and here again the above method does not seem to work.



I am also interested in any sharp upper bound for the smallest $a$, in terms of $p$.



Thanks for help.







number-theory elementary-number-theory quadratic-residues






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 13 at 1:12









René GyRené Gy

1,230713




1,230713








  • 4




    $begingroup$
    If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
    $endgroup$
    – Gerry Myerson
    Jan 13 at 1:54










  • $begingroup$
    @Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
    $endgroup$
    – René Gy
    Jan 13 at 9:20














  • 4




    $begingroup$
    If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
    $endgroup$
    – Gerry Myerson
    Jan 13 at 1:54










  • $begingroup$
    @Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
    $endgroup$
    – René Gy
    Jan 13 at 9:20








4




4




$begingroup$
If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
$endgroup$
– Gerry Myerson
Jan 13 at 1:54




$begingroup$
If you have three consecutive numbers that are non-residue, residue, non-residue, then multiplying by four gives you $a^2pm4$ both nonresidues. The standard way to tackle this sort ofmproblem is via exponential sums.
$endgroup$
– Gerry Myerson
Jan 13 at 1:54












$begingroup$
@Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
$endgroup$
– René Gy
Jan 13 at 9:20




$begingroup$
@Gerry Myerson Thanks, this comment is key in Misha Lavrov's solution.
$endgroup$
– René Gy
Jan 13 at 9:20










2 Answers
2






active

oldest

votes


















3












$begingroup$

Here is a solution in two steps.





First, we prove that when there is no such $a$, 2 is a QR. This is a bunch of casework, and doesn't work for some small primes. (Specifically for $p=2, 3, 5, 7, 11, 13$.) We can check those separately, and find all three counterexamples that way.



Suppose that 2 is a QNR. Therefore 8 is a QNR, 32 is a QNR, 18 is a QNR.



40 must be a QR or else we find the sequence 32, 36, 40. Therefore 20 is a QNR.



12 must be a QR or else we find the sequence 12, 16, 20. Therefore 24 is a QNR, 48 is a QR, 96 is a QNR.



104 must be a QR or else we find the sequence 96, 100, 104. Therefore 52 is a QNR.



28 must be a QNR or else we find the sequence 24, 28, 32. Therefore 14 is a QR.



22 must be a QR or else we find the sequence 14, 18, 22. Therefore 44 is a QNR.



Now we find the sequence 44, 48, 52.





Second, assuming that $2$ is a QR and there are no cases of $a$ such that $a^2-4$, $a^2+4$ are QNR, we arrive at a contradiction.



If any three consecutive integers $k, k+1, k+2$ follow the pattern QNR, QR, QNR, then the same is true for $4k, 4k+4, 4k+8$ and we are done. So adjacent to any QR is another QR.



If this is true, but no two consecutive integers are ever QNR, then we're also in trouble, because then at least approximately $frac23$ of the residues mod $p$ are QR.



Suppose that $k, k+1$ are both QNR for some $k$. Then $8k, 8k+8$ are both QNR, so $8k+4$ must be QNR or else $8k, 8k+4, 8k+8$ is the sequence we want. (Note that $8k+4 notequiv 0 pmod p$ because then $8k+8$ could not be QNR.) Therefore $2k, 2k+1, 2k+2$ is a sequence of three consecutive QNRs.



Applying this argument again, we see that $4k, 4k+1, 4k+2, 4k+3, 4k+4$ is a sequence of five consecutive QNRs. Then we get ever-longer sequences like this by iterating the argument. But once we get a sequence longer than $p$, we get a contradiction.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is quite complex argumentation, but I like it because all steps are elementary.
    $endgroup$
    – René Gy
    Jan 13 at 9:15



















0












$begingroup$

seems believable



jagy@phobeusjunior:~$ ./mse
p 3 fails p 5 fails p 7 a: 3 p 11 a: 5 p 13 fails
p 17 a: 1 p 19 a: 5 p 23 a: 1 p 29 a: 6 p 31 a: 5
p 37 a: 3 p 41 a: 8 p 43 a: 4 p 47 a: 1 p 53 a: 1
p 59 a: 6 p 61 a: 5 p 67 a: 3 p 71 a: 13 p 73 a: 3
p 79 a: 8 p 83 a: 1 p 89 a: 10 p 97 a: 3 p 101 a: 6
p 103 a: 4 p 107 a: 1 p 109 a: 6 p 113 a: 1 p 127 a: 4
p 131 a: 6 p 137 a: 1 p 139 a: 6 p 149 a: 6 p 151 a: 10
p 157 a: 5 p 163 a: 3 p 167 a: 1 p 173 a: 1 p 179 a: 6
p 181 a: 6 p 191 a: 5 p 193 a: 3 p 197 a: 1 p 199 a: 8
p 211 a: 6 p 223 a: 3 p 227 a: 1 p 229 a: 5 p 233 a: 1
p 239 a: 12 p 241 a: 12 p 251 a: 6 p 257 a: 1 p 263 a: 1
p 269 a: 6 p 271 a: 5 p 277 a: 7 p 281 a: 10 p 283 a: 4
p 293 a: 1 p 307 a: 3 p 311 a: 9 p 313 a: 7 p 317 a: 1
p 331 a: 6 p 337 a: 7 p 347 a: 1 p 349 a: 6 p 353 a: 1
p 359 a: 5 p 367 a: 4 p 373 a: 7 p 379 a: 6 p 383 a: 1
p 389 a: 5 p 397 a: 3 p 401 a: 8 p 409 a: 5 p 419 a: 6
p 421 a: 6 p 431 a: 9 p 433 a: 5 p 439 a: 8 p 443 a: 1
p 449 a: 5 p 457 a: 3 p 461 a: 6 p 463 a: 3 p 467 a: 1
p 479 a: 24 p 487 a: 3 p 491 a: 5 p 499 a: 6 p 503 a: 1
p 509 a: 6 p 521 a: 8 p 523 a: 4 p 541 a: 6 p 547 a: 4
p 557 a: 1 p 563 a: 1 p 569 a: 5 p 571 a: 6 p 577 a: 3
p 587 a: 1 p 593 a: 1 p 599 a: 5 p 601 a: 5 p 607 a: 4
p 613 a: 3 p 617 a: 1 p 619 a: 5 p 631 a: 10 p 641 a: 5
p 643 a: 3 p 647 a: 1 p 653 a: 1 p 659 a: 5 p 661 a: 6
p 673 a: 8 p 677 a: 1 p 683 a: 1 p 691 a: 6 p 701 a: 6
p 709 a: 6 p 719 a: 9 p 727 a: 4 p 733 a: 3 p 739 a: 6
p 743 a: 1 p 751 a: 8 p 757 a: 10 p 761 a: 10 p 769 a: 5
p 773 a: 1 p 787 a: 3 p 797 a: 1 p 809 a: 5 p 811 a: 6
p 821 a: 6 p 823 a: 4 p 827 a: 1 p 829 a: 5 p 839 a: 9
p 853 a: 3 p 857 a: 1 p 859 a: 5 p 863 a: 1 p 877 a: 3
p 881 a: 8 p 883 a: 4 p 887 a: 1 p 907 a: 4 p 911 a: 5
p 919 a: 12 p 929 a: 8 p 937 a: 16 p 941 a: 6 p 947 a: 1
p 953 a: 1 p 967 a: 3 p 971 a: 6 p 977 a: 1 p 983 a: 1
p 991 a: 8 p 997 a: 5 p 1009 a: 9 p 1013 a: 1 p 1019 a: 6
p 1021 a: 6 p 1031 a: 9 p 1033 a: 3 p 1039 a: 19 p 1049 a: 8





share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071602%2fis-there-always-a-positive-integer-a-such-that-both-a2-4-and-a24-are-qu%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Here is a solution in two steps.





    First, we prove that when there is no such $a$, 2 is a QR. This is a bunch of casework, and doesn't work for some small primes. (Specifically for $p=2, 3, 5, 7, 11, 13$.) We can check those separately, and find all three counterexamples that way.



    Suppose that 2 is a QNR. Therefore 8 is a QNR, 32 is a QNR, 18 is a QNR.



    40 must be a QR or else we find the sequence 32, 36, 40. Therefore 20 is a QNR.



    12 must be a QR or else we find the sequence 12, 16, 20. Therefore 24 is a QNR, 48 is a QR, 96 is a QNR.



    104 must be a QR or else we find the sequence 96, 100, 104. Therefore 52 is a QNR.



    28 must be a QNR or else we find the sequence 24, 28, 32. Therefore 14 is a QR.



    22 must be a QR or else we find the sequence 14, 18, 22. Therefore 44 is a QNR.



    Now we find the sequence 44, 48, 52.





    Second, assuming that $2$ is a QR and there are no cases of $a$ such that $a^2-4$, $a^2+4$ are QNR, we arrive at a contradiction.



    If any three consecutive integers $k, k+1, k+2$ follow the pattern QNR, QR, QNR, then the same is true for $4k, 4k+4, 4k+8$ and we are done. So adjacent to any QR is another QR.



    If this is true, but no two consecutive integers are ever QNR, then we're also in trouble, because then at least approximately $frac23$ of the residues mod $p$ are QR.



    Suppose that $k, k+1$ are both QNR for some $k$. Then $8k, 8k+8$ are both QNR, so $8k+4$ must be QNR or else $8k, 8k+4, 8k+8$ is the sequence we want. (Note that $8k+4 notequiv 0 pmod p$ because then $8k+8$ could not be QNR.) Therefore $2k, 2k+1, 2k+2$ is a sequence of three consecutive QNRs.



    Applying this argument again, we see that $4k, 4k+1, 4k+2, 4k+3, 4k+4$ is a sequence of five consecutive QNRs. Then we get ever-longer sequences like this by iterating the argument. But once we get a sequence longer than $p$, we get a contradiction.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      This is quite complex argumentation, but I like it because all steps are elementary.
      $endgroup$
      – René Gy
      Jan 13 at 9:15
















    3












    $begingroup$

    Here is a solution in two steps.





    First, we prove that when there is no such $a$, 2 is a QR. This is a bunch of casework, and doesn't work for some small primes. (Specifically for $p=2, 3, 5, 7, 11, 13$.) We can check those separately, and find all three counterexamples that way.



    Suppose that 2 is a QNR. Therefore 8 is a QNR, 32 is a QNR, 18 is a QNR.



    40 must be a QR or else we find the sequence 32, 36, 40. Therefore 20 is a QNR.



    12 must be a QR or else we find the sequence 12, 16, 20. Therefore 24 is a QNR, 48 is a QR, 96 is a QNR.



    104 must be a QR or else we find the sequence 96, 100, 104. Therefore 52 is a QNR.



    28 must be a QNR or else we find the sequence 24, 28, 32. Therefore 14 is a QR.



    22 must be a QR or else we find the sequence 14, 18, 22. Therefore 44 is a QNR.



    Now we find the sequence 44, 48, 52.





    Second, assuming that $2$ is a QR and there are no cases of $a$ such that $a^2-4$, $a^2+4$ are QNR, we arrive at a contradiction.



    If any three consecutive integers $k, k+1, k+2$ follow the pattern QNR, QR, QNR, then the same is true for $4k, 4k+4, 4k+8$ and we are done. So adjacent to any QR is another QR.



    If this is true, but no two consecutive integers are ever QNR, then we're also in trouble, because then at least approximately $frac23$ of the residues mod $p$ are QR.



    Suppose that $k, k+1$ are both QNR for some $k$. Then $8k, 8k+8$ are both QNR, so $8k+4$ must be QNR or else $8k, 8k+4, 8k+8$ is the sequence we want. (Note that $8k+4 notequiv 0 pmod p$ because then $8k+8$ could not be QNR.) Therefore $2k, 2k+1, 2k+2$ is a sequence of three consecutive QNRs.



    Applying this argument again, we see that $4k, 4k+1, 4k+2, 4k+3, 4k+4$ is a sequence of five consecutive QNRs. Then we get ever-longer sequences like this by iterating the argument. But once we get a sequence longer than $p$, we get a contradiction.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      This is quite complex argumentation, but I like it because all steps are elementary.
      $endgroup$
      – René Gy
      Jan 13 at 9:15














    3












    3








    3





    $begingroup$

    Here is a solution in two steps.





    First, we prove that when there is no such $a$, 2 is a QR. This is a bunch of casework, and doesn't work for some small primes. (Specifically for $p=2, 3, 5, 7, 11, 13$.) We can check those separately, and find all three counterexamples that way.



    Suppose that 2 is a QNR. Therefore 8 is a QNR, 32 is a QNR, 18 is a QNR.



    40 must be a QR or else we find the sequence 32, 36, 40. Therefore 20 is a QNR.



    12 must be a QR or else we find the sequence 12, 16, 20. Therefore 24 is a QNR, 48 is a QR, 96 is a QNR.



    104 must be a QR or else we find the sequence 96, 100, 104. Therefore 52 is a QNR.



    28 must be a QNR or else we find the sequence 24, 28, 32. Therefore 14 is a QR.



    22 must be a QR or else we find the sequence 14, 18, 22. Therefore 44 is a QNR.



    Now we find the sequence 44, 48, 52.





    Second, assuming that $2$ is a QR and there are no cases of $a$ such that $a^2-4$, $a^2+4$ are QNR, we arrive at a contradiction.



    If any three consecutive integers $k, k+1, k+2$ follow the pattern QNR, QR, QNR, then the same is true for $4k, 4k+4, 4k+8$ and we are done. So adjacent to any QR is another QR.



    If this is true, but no two consecutive integers are ever QNR, then we're also in trouble, because then at least approximately $frac23$ of the residues mod $p$ are QR.



    Suppose that $k, k+1$ are both QNR for some $k$. Then $8k, 8k+8$ are both QNR, so $8k+4$ must be QNR or else $8k, 8k+4, 8k+8$ is the sequence we want. (Note that $8k+4 notequiv 0 pmod p$ because then $8k+8$ could not be QNR.) Therefore $2k, 2k+1, 2k+2$ is a sequence of three consecutive QNRs.



    Applying this argument again, we see that $4k, 4k+1, 4k+2, 4k+3, 4k+4$ is a sequence of five consecutive QNRs. Then we get ever-longer sequences like this by iterating the argument. But once we get a sequence longer than $p$, we get a contradiction.






    share|cite|improve this answer











    $endgroup$



    Here is a solution in two steps.





    First, we prove that when there is no such $a$, 2 is a QR. This is a bunch of casework, and doesn't work for some small primes. (Specifically for $p=2, 3, 5, 7, 11, 13$.) We can check those separately, and find all three counterexamples that way.



    Suppose that 2 is a QNR. Therefore 8 is a QNR, 32 is a QNR, 18 is a QNR.



    40 must be a QR or else we find the sequence 32, 36, 40. Therefore 20 is a QNR.



    12 must be a QR or else we find the sequence 12, 16, 20. Therefore 24 is a QNR, 48 is a QR, 96 is a QNR.



    104 must be a QR or else we find the sequence 96, 100, 104. Therefore 52 is a QNR.



    28 must be a QNR or else we find the sequence 24, 28, 32. Therefore 14 is a QR.



    22 must be a QR or else we find the sequence 14, 18, 22. Therefore 44 is a QNR.



    Now we find the sequence 44, 48, 52.





    Second, assuming that $2$ is a QR and there are no cases of $a$ such that $a^2-4$, $a^2+4$ are QNR, we arrive at a contradiction.



    If any three consecutive integers $k, k+1, k+2$ follow the pattern QNR, QR, QNR, then the same is true for $4k, 4k+4, 4k+8$ and we are done. So adjacent to any QR is another QR.



    If this is true, but no two consecutive integers are ever QNR, then we're also in trouble, because then at least approximately $frac23$ of the residues mod $p$ are QR.



    Suppose that $k, k+1$ are both QNR for some $k$. Then $8k, 8k+8$ are both QNR, so $8k+4$ must be QNR or else $8k, 8k+4, 8k+8$ is the sequence we want. (Note that $8k+4 notequiv 0 pmod p$ because then $8k+8$ could not be QNR.) Therefore $2k, 2k+1, 2k+2$ is a sequence of three consecutive QNRs.



    Applying this argument again, we see that $4k, 4k+1, 4k+2, 4k+3, 4k+4$ is a sequence of five consecutive QNRs. Then we get ever-longer sequences like this by iterating the argument. But once we get a sequence longer than $p$, we get a contradiction.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 13 at 3:39

























    answered Jan 13 at 3:21









    Misha LavrovMisha Lavrov

    49.6k759109




    49.6k759109












    • $begingroup$
      This is quite complex argumentation, but I like it because all steps are elementary.
      $endgroup$
      – René Gy
      Jan 13 at 9:15


















    • $begingroup$
      This is quite complex argumentation, but I like it because all steps are elementary.
      $endgroup$
      – René Gy
      Jan 13 at 9:15
















    $begingroup$
    This is quite complex argumentation, but I like it because all steps are elementary.
    $endgroup$
    – René Gy
    Jan 13 at 9:15




    $begingroup$
    This is quite complex argumentation, but I like it because all steps are elementary.
    $endgroup$
    – René Gy
    Jan 13 at 9:15











    0












    $begingroup$

    seems believable



    jagy@phobeusjunior:~$ ./mse
    p 3 fails p 5 fails p 7 a: 3 p 11 a: 5 p 13 fails
    p 17 a: 1 p 19 a: 5 p 23 a: 1 p 29 a: 6 p 31 a: 5
    p 37 a: 3 p 41 a: 8 p 43 a: 4 p 47 a: 1 p 53 a: 1
    p 59 a: 6 p 61 a: 5 p 67 a: 3 p 71 a: 13 p 73 a: 3
    p 79 a: 8 p 83 a: 1 p 89 a: 10 p 97 a: 3 p 101 a: 6
    p 103 a: 4 p 107 a: 1 p 109 a: 6 p 113 a: 1 p 127 a: 4
    p 131 a: 6 p 137 a: 1 p 139 a: 6 p 149 a: 6 p 151 a: 10
    p 157 a: 5 p 163 a: 3 p 167 a: 1 p 173 a: 1 p 179 a: 6
    p 181 a: 6 p 191 a: 5 p 193 a: 3 p 197 a: 1 p 199 a: 8
    p 211 a: 6 p 223 a: 3 p 227 a: 1 p 229 a: 5 p 233 a: 1
    p 239 a: 12 p 241 a: 12 p 251 a: 6 p 257 a: 1 p 263 a: 1
    p 269 a: 6 p 271 a: 5 p 277 a: 7 p 281 a: 10 p 283 a: 4
    p 293 a: 1 p 307 a: 3 p 311 a: 9 p 313 a: 7 p 317 a: 1
    p 331 a: 6 p 337 a: 7 p 347 a: 1 p 349 a: 6 p 353 a: 1
    p 359 a: 5 p 367 a: 4 p 373 a: 7 p 379 a: 6 p 383 a: 1
    p 389 a: 5 p 397 a: 3 p 401 a: 8 p 409 a: 5 p 419 a: 6
    p 421 a: 6 p 431 a: 9 p 433 a: 5 p 439 a: 8 p 443 a: 1
    p 449 a: 5 p 457 a: 3 p 461 a: 6 p 463 a: 3 p 467 a: 1
    p 479 a: 24 p 487 a: 3 p 491 a: 5 p 499 a: 6 p 503 a: 1
    p 509 a: 6 p 521 a: 8 p 523 a: 4 p 541 a: 6 p 547 a: 4
    p 557 a: 1 p 563 a: 1 p 569 a: 5 p 571 a: 6 p 577 a: 3
    p 587 a: 1 p 593 a: 1 p 599 a: 5 p 601 a: 5 p 607 a: 4
    p 613 a: 3 p 617 a: 1 p 619 a: 5 p 631 a: 10 p 641 a: 5
    p 643 a: 3 p 647 a: 1 p 653 a: 1 p 659 a: 5 p 661 a: 6
    p 673 a: 8 p 677 a: 1 p 683 a: 1 p 691 a: 6 p 701 a: 6
    p 709 a: 6 p 719 a: 9 p 727 a: 4 p 733 a: 3 p 739 a: 6
    p 743 a: 1 p 751 a: 8 p 757 a: 10 p 761 a: 10 p 769 a: 5
    p 773 a: 1 p 787 a: 3 p 797 a: 1 p 809 a: 5 p 811 a: 6
    p 821 a: 6 p 823 a: 4 p 827 a: 1 p 829 a: 5 p 839 a: 9
    p 853 a: 3 p 857 a: 1 p 859 a: 5 p 863 a: 1 p 877 a: 3
    p 881 a: 8 p 883 a: 4 p 887 a: 1 p 907 a: 4 p 911 a: 5
    p 919 a: 12 p 929 a: 8 p 937 a: 16 p 941 a: 6 p 947 a: 1
    p 953 a: 1 p 967 a: 3 p 971 a: 6 p 977 a: 1 p 983 a: 1
    p 991 a: 8 p 997 a: 5 p 1009 a: 9 p 1013 a: 1 p 1019 a: 6
    p 1021 a: 6 p 1031 a: 9 p 1033 a: 3 p 1039 a: 19 p 1049 a: 8





    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      seems believable



      jagy@phobeusjunior:~$ ./mse
      p 3 fails p 5 fails p 7 a: 3 p 11 a: 5 p 13 fails
      p 17 a: 1 p 19 a: 5 p 23 a: 1 p 29 a: 6 p 31 a: 5
      p 37 a: 3 p 41 a: 8 p 43 a: 4 p 47 a: 1 p 53 a: 1
      p 59 a: 6 p 61 a: 5 p 67 a: 3 p 71 a: 13 p 73 a: 3
      p 79 a: 8 p 83 a: 1 p 89 a: 10 p 97 a: 3 p 101 a: 6
      p 103 a: 4 p 107 a: 1 p 109 a: 6 p 113 a: 1 p 127 a: 4
      p 131 a: 6 p 137 a: 1 p 139 a: 6 p 149 a: 6 p 151 a: 10
      p 157 a: 5 p 163 a: 3 p 167 a: 1 p 173 a: 1 p 179 a: 6
      p 181 a: 6 p 191 a: 5 p 193 a: 3 p 197 a: 1 p 199 a: 8
      p 211 a: 6 p 223 a: 3 p 227 a: 1 p 229 a: 5 p 233 a: 1
      p 239 a: 12 p 241 a: 12 p 251 a: 6 p 257 a: 1 p 263 a: 1
      p 269 a: 6 p 271 a: 5 p 277 a: 7 p 281 a: 10 p 283 a: 4
      p 293 a: 1 p 307 a: 3 p 311 a: 9 p 313 a: 7 p 317 a: 1
      p 331 a: 6 p 337 a: 7 p 347 a: 1 p 349 a: 6 p 353 a: 1
      p 359 a: 5 p 367 a: 4 p 373 a: 7 p 379 a: 6 p 383 a: 1
      p 389 a: 5 p 397 a: 3 p 401 a: 8 p 409 a: 5 p 419 a: 6
      p 421 a: 6 p 431 a: 9 p 433 a: 5 p 439 a: 8 p 443 a: 1
      p 449 a: 5 p 457 a: 3 p 461 a: 6 p 463 a: 3 p 467 a: 1
      p 479 a: 24 p 487 a: 3 p 491 a: 5 p 499 a: 6 p 503 a: 1
      p 509 a: 6 p 521 a: 8 p 523 a: 4 p 541 a: 6 p 547 a: 4
      p 557 a: 1 p 563 a: 1 p 569 a: 5 p 571 a: 6 p 577 a: 3
      p 587 a: 1 p 593 a: 1 p 599 a: 5 p 601 a: 5 p 607 a: 4
      p 613 a: 3 p 617 a: 1 p 619 a: 5 p 631 a: 10 p 641 a: 5
      p 643 a: 3 p 647 a: 1 p 653 a: 1 p 659 a: 5 p 661 a: 6
      p 673 a: 8 p 677 a: 1 p 683 a: 1 p 691 a: 6 p 701 a: 6
      p 709 a: 6 p 719 a: 9 p 727 a: 4 p 733 a: 3 p 739 a: 6
      p 743 a: 1 p 751 a: 8 p 757 a: 10 p 761 a: 10 p 769 a: 5
      p 773 a: 1 p 787 a: 3 p 797 a: 1 p 809 a: 5 p 811 a: 6
      p 821 a: 6 p 823 a: 4 p 827 a: 1 p 829 a: 5 p 839 a: 9
      p 853 a: 3 p 857 a: 1 p 859 a: 5 p 863 a: 1 p 877 a: 3
      p 881 a: 8 p 883 a: 4 p 887 a: 1 p 907 a: 4 p 911 a: 5
      p 919 a: 12 p 929 a: 8 p 937 a: 16 p 941 a: 6 p 947 a: 1
      p 953 a: 1 p 967 a: 3 p 971 a: 6 p 977 a: 1 p 983 a: 1
      p 991 a: 8 p 997 a: 5 p 1009 a: 9 p 1013 a: 1 p 1019 a: 6
      p 1021 a: 6 p 1031 a: 9 p 1033 a: 3 p 1039 a: 19 p 1049 a: 8





      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        seems believable



        jagy@phobeusjunior:~$ ./mse
        p 3 fails p 5 fails p 7 a: 3 p 11 a: 5 p 13 fails
        p 17 a: 1 p 19 a: 5 p 23 a: 1 p 29 a: 6 p 31 a: 5
        p 37 a: 3 p 41 a: 8 p 43 a: 4 p 47 a: 1 p 53 a: 1
        p 59 a: 6 p 61 a: 5 p 67 a: 3 p 71 a: 13 p 73 a: 3
        p 79 a: 8 p 83 a: 1 p 89 a: 10 p 97 a: 3 p 101 a: 6
        p 103 a: 4 p 107 a: 1 p 109 a: 6 p 113 a: 1 p 127 a: 4
        p 131 a: 6 p 137 a: 1 p 139 a: 6 p 149 a: 6 p 151 a: 10
        p 157 a: 5 p 163 a: 3 p 167 a: 1 p 173 a: 1 p 179 a: 6
        p 181 a: 6 p 191 a: 5 p 193 a: 3 p 197 a: 1 p 199 a: 8
        p 211 a: 6 p 223 a: 3 p 227 a: 1 p 229 a: 5 p 233 a: 1
        p 239 a: 12 p 241 a: 12 p 251 a: 6 p 257 a: 1 p 263 a: 1
        p 269 a: 6 p 271 a: 5 p 277 a: 7 p 281 a: 10 p 283 a: 4
        p 293 a: 1 p 307 a: 3 p 311 a: 9 p 313 a: 7 p 317 a: 1
        p 331 a: 6 p 337 a: 7 p 347 a: 1 p 349 a: 6 p 353 a: 1
        p 359 a: 5 p 367 a: 4 p 373 a: 7 p 379 a: 6 p 383 a: 1
        p 389 a: 5 p 397 a: 3 p 401 a: 8 p 409 a: 5 p 419 a: 6
        p 421 a: 6 p 431 a: 9 p 433 a: 5 p 439 a: 8 p 443 a: 1
        p 449 a: 5 p 457 a: 3 p 461 a: 6 p 463 a: 3 p 467 a: 1
        p 479 a: 24 p 487 a: 3 p 491 a: 5 p 499 a: 6 p 503 a: 1
        p 509 a: 6 p 521 a: 8 p 523 a: 4 p 541 a: 6 p 547 a: 4
        p 557 a: 1 p 563 a: 1 p 569 a: 5 p 571 a: 6 p 577 a: 3
        p 587 a: 1 p 593 a: 1 p 599 a: 5 p 601 a: 5 p 607 a: 4
        p 613 a: 3 p 617 a: 1 p 619 a: 5 p 631 a: 10 p 641 a: 5
        p 643 a: 3 p 647 a: 1 p 653 a: 1 p 659 a: 5 p 661 a: 6
        p 673 a: 8 p 677 a: 1 p 683 a: 1 p 691 a: 6 p 701 a: 6
        p 709 a: 6 p 719 a: 9 p 727 a: 4 p 733 a: 3 p 739 a: 6
        p 743 a: 1 p 751 a: 8 p 757 a: 10 p 761 a: 10 p 769 a: 5
        p 773 a: 1 p 787 a: 3 p 797 a: 1 p 809 a: 5 p 811 a: 6
        p 821 a: 6 p 823 a: 4 p 827 a: 1 p 829 a: 5 p 839 a: 9
        p 853 a: 3 p 857 a: 1 p 859 a: 5 p 863 a: 1 p 877 a: 3
        p 881 a: 8 p 883 a: 4 p 887 a: 1 p 907 a: 4 p 911 a: 5
        p 919 a: 12 p 929 a: 8 p 937 a: 16 p 941 a: 6 p 947 a: 1
        p 953 a: 1 p 967 a: 3 p 971 a: 6 p 977 a: 1 p 983 a: 1
        p 991 a: 8 p 997 a: 5 p 1009 a: 9 p 1013 a: 1 p 1019 a: 6
        p 1021 a: 6 p 1031 a: 9 p 1033 a: 3 p 1039 a: 19 p 1049 a: 8





        share|cite|improve this answer









        $endgroup$



        seems believable



        jagy@phobeusjunior:~$ ./mse
        p 3 fails p 5 fails p 7 a: 3 p 11 a: 5 p 13 fails
        p 17 a: 1 p 19 a: 5 p 23 a: 1 p 29 a: 6 p 31 a: 5
        p 37 a: 3 p 41 a: 8 p 43 a: 4 p 47 a: 1 p 53 a: 1
        p 59 a: 6 p 61 a: 5 p 67 a: 3 p 71 a: 13 p 73 a: 3
        p 79 a: 8 p 83 a: 1 p 89 a: 10 p 97 a: 3 p 101 a: 6
        p 103 a: 4 p 107 a: 1 p 109 a: 6 p 113 a: 1 p 127 a: 4
        p 131 a: 6 p 137 a: 1 p 139 a: 6 p 149 a: 6 p 151 a: 10
        p 157 a: 5 p 163 a: 3 p 167 a: 1 p 173 a: 1 p 179 a: 6
        p 181 a: 6 p 191 a: 5 p 193 a: 3 p 197 a: 1 p 199 a: 8
        p 211 a: 6 p 223 a: 3 p 227 a: 1 p 229 a: 5 p 233 a: 1
        p 239 a: 12 p 241 a: 12 p 251 a: 6 p 257 a: 1 p 263 a: 1
        p 269 a: 6 p 271 a: 5 p 277 a: 7 p 281 a: 10 p 283 a: 4
        p 293 a: 1 p 307 a: 3 p 311 a: 9 p 313 a: 7 p 317 a: 1
        p 331 a: 6 p 337 a: 7 p 347 a: 1 p 349 a: 6 p 353 a: 1
        p 359 a: 5 p 367 a: 4 p 373 a: 7 p 379 a: 6 p 383 a: 1
        p 389 a: 5 p 397 a: 3 p 401 a: 8 p 409 a: 5 p 419 a: 6
        p 421 a: 6 p 431 a: 9 p 433 a: 5 p 439 a: 8 p 443 a: 1
        p 449 a: 5 p 457 a: 3 p 461 a: 6 p 463 a: 3 p 467 a: 1
        p 479 a: 24 p 487 a: 3 p 491 a: 5 p 499 a: 6 p 503 a: 1
        p 509 a: 6 p 521 a: 8 p 523 a: 4 p 541 a: 6 p 547 a: 4
        p 557 a: 1 p 563 a: 1 p 569 a: 5 p 571 a: 6 p 577 a: 3
        p 587 a: 1 p 593 a: 1 p 599 a: 5 p 601 a: 5 p 607 a: 4
        p 613 a: 3 p 617 a: 1 p 619 a: 5 p 631 a: 10 p 641 a: 5
        p 643 a: 3 p 647 a: 1 p 653 a: 1 p 659 a: 5 p 661 a: 6
        p 673 a: 8 p 677 a: 1 p 683 a: 1 p 691 a: 6 p 701 a: 6
        p 709 a: 6 p 719 a: 9 p 727 a: 4 p 733 a: 3 p 739 a: 6
        p 743 a: 1 p 751 a: 8 p 757 a: 10 p 761 a: 10 p 769 a: 5
        p 773 a: 1 p 787 a: 3 p 797 a: 1 p 809 a: 5 p 811 a: 6
        p 821 a: 6 p 823 a: 4 p 827 a: 1 p 829 a: 5 p 839 a: 9
        p 853 a: 3 p 857 a: 1 p 859 a: 5 p 863 a: 1 p 877 a: 3
        p 881 a: 8 p 883 a: 4 p 887 a: 1 p 907 a: 4 p 911 a: 5
        p 919 a: 12 p 929 a: 8 p 937 a: 16 p 941 a: 6 p 947 a: 1
        p 953 a: 1 p 967 a: 3 p 971 a: 6 p 977 a: 1 p 983 a: 1
        p 991 a: 8 p 997 a: 5 p 1009 a: 9 p 1013 a: 1 p 1019 a: 6
        p 1021 a: 6 p 1031 a: 9 p 1033 a: 3 p 1039 a: 19 p 1049 a: 8






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 13 at 1:54









        Will JagyWill Jagy

        104k5103202




        104k5103202






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071602%2fis-there-always-a-positive-integer-a-such-that-both-a2-4-and-a24-are-qu%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna