Proving that $-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]=-frac12log(2-2cos2x)$
$begingroup$
I was looking at this answer and I was confused to see the equality
$$-frac12left[;logleft(1-e^{2ix}right)+logleft(1-e^{-2ix}right);right]=-frac12log(2-2cos2x)$$
Which I am unable to prove.
I have tried
$$
S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}
$$
Then with $u=e^{ix}$:
$$frac{1-u^2}{1-frac1{u^2}}=frac{1-u^2}{1-frac1{u^2}}frac{u^2}{u^2}=-u^2frac{u^2-1}{u^2-1}=-u^2$$
So
$$S=-frac12log(-e^{2ix})=-frac{ipi}2-ix$$
Which I'm fairly certain is wrong. I'm sure there is something realy simple I'm missing here, could I have some help? Thanks.
algebra-precalculus proof-explanation
$endgroup$
add a comment |
$begingroup$
I was looking at this answer and I was confused to see the equality
$$-frac12left[;logleft(1-e^{2ix}right)+logleft(1-e^{-2ix}right);right]=-frac12log(2-2cos2x)$$
Which I am unable to prove.
I have tried
$$
S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}
$$
Then with $u=e^{ix}$:
$$frac{1-u^2}{1-frac1{u^2}}=frac{1-u^2}{1-frac1{u^2}}frac{u^2}{u^2}=-u^2frac{u^2-1}{u^2-1}=-u^2$$
So
$$S=-frac12log(-e^{2ix})=-frac{ipi}2-ix$$
Which I'm fairly certain is wrong. I'm sure there is something realy simple I'm missing here, could I have some help? Thanks.
algebra-precalculus proof-explanation
$endgroup$
add a comment |
$begingroup$
I was looking at this answer and I was confused to see the equality
$$-frac12left[;logleft(1-e^{2ix}right)+logleft(1-e^{-2ix}right);right]=-frac12log(2-2cos2x)$$
Which I am unable to prove.
I have tried
$$
S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}
$$
Then with $u=e^{ix}$:
$$frac{1-u^2}{1-frac1{u^2}}=frac{1-u^2}{1-frac1{u^2}}frac{u^2}{u^2}=-u^2frac{u^2-1}{u^2-1}=-u^2$$
So
$$S=-frac12log(-e^{2ix})=-frac{ipi}2-ix$$
Which I'm fairly certain is wrong. I'm sure there is something realy simple I'm missing here, could I have some help? Thanks.
algebra-precalculus proof-explanation
$endgroup$
I was looking at this answer and I was confused to see the equality
$$-frac12left[;logleft(1-e^{2ix}right)+logleft(1-e^{-2ix}right);right]=-frac12log(2-2cos2x)$$
Which I am unable to prove.
I have tried
$$
S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}
$$
Then with $u=e^{ix}$:
$$frac{1-u^2}{1-frac1{u^2}}=frac{1-u^2}{1-frac1{u^2}}frac{u^2}{u^2}=-u^2frac{u^2-1}{u^2-1}=-u^2$$
So
$$S=-frac12log(-e^{2ix})=-frac{ipi}2-ix$$
Which I'm fairly certain is wrong. I'm sure there is something realy simple I'm missing here, could I have some help? Thanks.
algebra-precalculus proof-explanation
algebra-precalculus proof-explanation
edited Jan 13 at 1:15
Blue
49.7k870158
49.7k870158
asked Jan 13 at 1:03
clathratusclathratus
5,1441439
5,1441439
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This step is wrong.
$$S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}$$
Correct way:
begin{align}
-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]&=-frac12[log((1-e^{2ix})(1-e^{-2ix}))]\
&=-frac12[log(1-e^{-2ix}-e^{2ix}+1))]\
&=-frac12log(2-2cos2x)
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071590%2fproving-that-frac12-log1-e2ix-log1-e-2ix-frac12-log2-2-cos2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This step is wrong.
$$S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}$$
Correct way:
begin{align}
-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]&=-frac12[log((1-e^{2ix})(1-e^{-2ix}))]\
&=-frac12[log(1-e^{-2ix}-e^{2ix}+1))]\
&=-frac12log(2-2cos2x)
end{align}
$endgroup$
add a comment |
$begingroup$
This step is wrong.
$$S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}$$
Correct way:
begin{align}
-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]&=-frac12[log((1-e^{2ix})(1-e^{-2ix}))]\
&=-frac12[log(1-e^{-2ix}-e^{2ix}+1))]\
&=-frac12log(2-2cos2x)
end{align}
$endgroup$
add a comment |
$begingroup$
This step is wrong.
$$S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}$$
Correct way:
begin{align}
-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]&=-frac12[log((1-e^{2ix})(1-e^{-2ix}))]\
&=-frac12[log(1-e^{-2ix}-e^{2ix}+1))]\
&=-frac12log(2-2cos2x)
end{align}
$endgroup$
This step is wrong.
$$S=-frac12log(1-e^{2ix})-frac12log(1-e^{-2ix})=-frac12logfrac{1-e^{2ix}}{1-e^{-2ix}}$$
Correct way:
begin{align}
-frac12[log(1-e^{2ix})+log(1-e^{-2ix})]&=-frac12[log((1-e^{2ix})(1-e^{-2ix}))]\
&=-frac12[log(1-e^{-2ix}-e^{2ix}+1))]\
&=-frac12log(2-2cos2x)
end{align}
answered Jan 13 at 1:12
Thomas ShelbyThomas Shelby
4,7382727
4,7382727
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071590%2fproving-that-frac12-log1-e2ix-log1-e-2ix-frac12-log2-2-cos2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown