Matrix demonstration $A^k$












1












$begingroup$


Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $



Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried so far? What approach do you think will work here?
    $endgroup$
    – user3482749
    Jan 13 at 0:37






  • 2




    $begingroup$
    Have you tried proof by induction?
    $endgroup$
    – user7530
    Jan 13 at 0:37










  • $begingroup$
    yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
    $endgroup$
    – PTSONIC
    Jan 13 at 0:40






  • 1




    $begingroup$
    Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
    $endgroup$
    – Git Gud
    Jan 13 at 0:46










  • $begingroup$
    yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
    $endgroup$
    – PTSONIC
    Jan 13 at 1:01
















1












$begingroup$


Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $



Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried so far? What approach do you think will work here?
    $endgroup$
    – user3482749
    Jan 13 at 0:37






  • 2




    $begingroup$
    Have you tried proof by induction?
    $endgroup$
    – user7530
    Jan 13 at 0:37










  • $begingroup$
    yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
    $endgroup$
    – PTSONIC
    Jan 13 at 0:40






  • 1




    $begingroup$
    Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
    $endgroup$
    – Git Gud
    Jan 13 at 0:46










  • $begingroup$
    yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
    $endgroup$
    – PTSONIC
    Jan 13 at 1:01














1












1








1


1



$begingroup$


Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $



Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$










share|cite|improve this question











$endgroup$




Given a matrix $A = begin{bmatrix} 7 & 4\ -9 & -5 end{bmatrix}$ $in mathcal{M2times2}, (mathbb{R}) $



Show that $A^k = begin{bmatrix} 1+6k & 4k\ -9k & 1-6k end{bmatrix} $
for every $k in mathbb{N}$







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 0:36









Robert Lewis

49k23168




49k23168










asked Jan 13 at 0:36









PTSONICPTSONIC

83




83












  • $begingroup$
    What have you tried so far? What approach do you think will work here?
    $endgroup$
    – user3482749
    Jan 13 at 0:37






  • 2




    $begingroup$
    Have you tried proof by induction?
    $endgroup$
    – user7530
    Jan 13 at 0:37










  • $begingroup$
    yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
    $endgroup$
    – PTSONIC
    Jan 13 at 0:40






  • 1




    $begingroup$
    Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
    $endgroup$
    – Git Gud
    Jan 13 at 0:46










  • $begingroup$
    yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
    $endgroup$
    – PTSONIC
    Jan 13 at 1:01


















  • $begingroup$
    What have you tried so far? What approach do you think will work here?
    $endgroup$
    – user3482749
    Jan 13 at 0:37






  • 2




    $begingroup$
    Have you tried proof by induction?
    $endgroup$
    – user7530
    Jan 13 at 0:37










  • $begingroup$
    yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
    $endgroup$
    – PTSONIC
    Jan 13 at 0:40






  • 1




    $begingroup$
    Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
    $endgroup$
    – Git Gud
    Jan 13 at 0:46










  • $begingroup$
    yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
    $endgroup$
    – PTSONIC
    Jan 13 at 1:01
















$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37




$begingroup$
What have you tried so far? What approach do you think will work here?
$endgroup$
– user3482749
Jan 13 at 0:37




2




2




$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37




$begingroup$
Have you tried proof by induction?
$endgroup$
– user7530
Jan 13 at 0:37












$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40




$begingroup$
yes I thought about the proof by induction but i got lost in the process, I don't know which way is the best, honestly.
$endgroup$
– PTSONIC
Jan 13 at 0:40




1




1




$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46




$begingroup$
Can you start by computing $A^kA$ and simplifying the result? Shows us your work.
$endgroup$
– Git Gud
Jan 13 at 0:46












$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01




$begingroup$
yes the result is this matrix I think $begin{bmatrix} 7+6k & 4+4k\ -9-9k & -5-6k end{bmatrix} $
$endgroup$
– PTSONIC
Jan 13 at 1:01










2 Answers
2






active

oldest

votes


















2












$begingroup$

Try a simple induction on $k$; it is clear that for $k = 1$,



$A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$



then assuming that for some $k$



$A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$



we find



$A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
$= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$



which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$



    How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Very nice indeed, endorsed, +1!!!
      $endgroup$
      – Robert Lewis
      Jan 13 at 1:47












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071571%2fmatrix-demonstration-ak%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Try a simple induction on $k$; it is clear that for $k = 1$,



    $A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$



    then assuming that for some $k$



    $A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$



    we find



    $A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
    $= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$



    which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Try a simple induction on $k$; it is clear that for $k = 1$,



      $A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$



      then assuming that for some $k$



      $A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$



      we find



      $A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
      $= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$



      which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Try a simple induction on $k$; it is clear that for $k = 1$,



        $A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$



        then assuming that for some $k$



        $A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$



        we find



        $A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
        $= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$



        which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.






        share|cite|improve this answer









        $endgroup$



        Try a simple induction on $k$; it is clear that for $k = 1$,



        $A^1 = A = begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 1 + 6 cdot 1 & 4 cdot 1 \ -9 cdot 1 & 1 - 6 cdot 1 end{bmatrix}; tag 1$



        then assuming that for some $k$



        $A^k = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}, tag 2$



        we find



        $A^{k + 1} = A^kA = begin{bmatrix} 1 + 6 cdot k & 4 cdot k \ -9 cdot k & 1 - 6 cdot k end{bmatrix}begin{bmatrix} 7 & 4 \ -9 & -5 end{bmatrix} = begin{bmatrix} 7 + 42k - 36k & 4 + 24k - 20k \ -63k - 9 + 54k & -36k - 5 + 30k end{bmatrix}$
        $= begin{bmatrix} 7 + 6k & 4 + 4k \ -9 -9k & - 5 -6k end{bmatrix} = begin{bmatrix} 1 + 6(k + 1) & 4(k + 1) \ -9(k + 1) & 1 - 6(k + 1) end{bmatrix}, tag 3$



        which is simply (2) with $k$ replaced by $k + 1$; we thus infer the formula (2) holds for all $k ge 1$, as desired. $OEDelta$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 13 at 0:56









        Robert LewisRobert Lewis

        49k23168




        49k23168























            2












            $begingroup$

            Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$



            How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Very nice indeed, endorsed, +1!!!
              $endgroup$
              – Robert Lewis
              Jan 13 at 1:47
















            2












            $begingroup$

            Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$



            How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Very nice indeed, endorsed, +1!!!
              $endgroup$
              – Robert Lewis
              Jan 13 at 1:47














            2












            2








            2





            $begingroup$

            Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$



            How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.






            share|cite|improve this answer











            $endgroup$



            Let $N = A-I$ and observe that $N^2=0$. Since $N$ and $I$ commute, we can expand via the binomial theorem: $$A^k = (I+N)^k = I+binom k1N+binom k2N^2+dots = I+kN.$$



            How did I hit upon this decomposition? I computed that $1$ was the only eigenvalue of $A$, but the only diagonalizable $2times2$ matrices with repeated eigenvalues are multiples of the identity, so $A$ splits into the sum of the identity and a nilpotent matrix. That is, $$A = Pbegin{bmatrix}1&1\0&1end{bmatrix}P^{-1} = I + Pbegin{bmatrix}0&1\0&0end{bmatrix}P^{-1}$$ for some invertible matrix $P$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 16 at 1:10

























            answered Jan 13 at 1:26









            amdamd

            31.8k21053




            31.8k21053












            • $begingroup$
              Very nice indeed, endorsed, +1!!!
              $endgroup$
              – Robert Lewis
              Jan 13 at 1:47


















            • $begingroup$
              Very nice indeed, endorsed, +1!!!
              $endgroup$
              – Robert Lewis
              Jan 13 at 1:47
















            $begingroup$
            Very nice indeed, endorsed, +1!!!
            $endgroup$
            – Robert Lewis
            Jan 13 at 1:47




            $begingroup$
            Very nice indeed, endorsed, +1!!!
            $endgroup$
            – Robert Lewis
            Jan 13 at 1:47


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071571%2fmatrix-demonstration-ak%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna