Is there a closed form for the trigonometric integral $intlimits_0^{pi/4}frac{cos(2k+1)x}{cos x} dx$?
$begingroup$
One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.
But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?
So far, I tried by induction and by IBP but couldn't come to a simple closed form.
Thanks for your hints !
integration definite-integrals trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.
But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?
So far, I tried by induction and by IBP but couldn't come to a simple closed form.
Thanks for your hints !
integration definite-integrals trigonometric-integrals
$endgroup$
1
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10
add a comment |
$begingroup$
One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.
But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?
So far, I tried by induction and by IBP but couldn't come to a simple closed form.
Thanks for your hints !
integration definite-integrals trigonometric-integrals
$endgroup$
One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.
But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?
So far, I tried by induction and by IBP but couldn't come to a simple closed form.
Thanks for your hints !
integration definite-integrals trigonometric-integrals
integration definite-integrals trigonometric-integrals
edited Jan 15 at 17:55
Did
249k23229468
249k23229468
asked Jan 15 at 17:41
fjaclotfjaclot
312
312
1
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10
add a comment |
1
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10
1
1
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
A sketch:
Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}
for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .
$endgroup$
add a comment |
$begingroup$
It is worthwhile to recall that for $ninBbb N$,
$$cos nx=T_n(cos x)$$
Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
$$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
Hence
$$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
$$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
$$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
$$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
Then we focus on the integral
$$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:
Consider the integral
$$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
Then Recall the definition of the incomplete Beta function:
$$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
Thus
$$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Thus
$$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Which could be considered a closed form.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074697%2fis-there-a-closed-form-for-the-trigonometric-integral-int-limits-0-pi-4-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A sketch:
Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}
for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .
$endgroup$
add a comment |
$begingroup$
A sketch:
Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}
for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .
$endgroup$
add a comment |
$begingroup$
A sketch:
Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}
for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .
$endgroup$
A sketch:
Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}
for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .
answered Jan 15 at 19:22
ComplexYetTrivialComplexYetTrivial
5,1682631
5,1682631
add a comment |
add a comment |
$begingroup$
It is worthwhile to recall that for $ninBbb N$,
$$cos nx=T_n(cos x)$$
Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
$$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
Hence
$$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
$$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
$$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
$$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
Then we focus on the integral
$$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:
Consider the integral
$$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
Then Recall the definition of the incomplete Beta function:
$$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
Thus
$$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Thus
$$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Which could be considered a closed form.
$endgroup$
add a comment |
$begingroup$
It is worthwhile to recall that for $ninBbb N$,
$$cos nx=T_n(cos x)$$
Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
$$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
Hence
$$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
$$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
$$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
$$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
Then we focus on the integral
$$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:
Consider the integral
$$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
Then Recall the definition of the incomplete Beta function:
$$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
Thus
$$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Thus
$$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Which could be considered a closed form.
$endgroup$
add a comment |
$begingroup$
It is worthwhile to recall that for $ninBbb N$,
$$cos nx=T_n(cos x)$$
Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
$$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
Hence
$$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
$$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
$$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
$$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
Then we focus on the integral
$$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:
Consider the integral
$$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
Then Recall the definition of the incomplete Beta function:
$$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
Thus
$$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Thus
$$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Which could be considered a closed form.
$endgroup$
It is worthwhile to recall that for $ninBbb N$,
$$cos nx=T_n(cos x)$$
Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
$$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
Hence
$$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
$$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
$$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
$$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
Then we focus on the integral
$$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:
Consider the integral
$$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
$$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
Then Recall the definition of the incomplete Beta function:
$$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
Thus
$$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Thus
$$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
Which could be considered a closed form.
answered Jan 15 at 19:47
clathratusclathratus
5,3041440
5,3041440
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074697%2fis-there-a-closed-form-for-the-trigonometric-integral-int-limits-0-pi-4-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10