Is there a closed form for the trigonometric integral $intlimits_0^{pi/4}frac{cos(2k+1)x}{cos x} dx$?












4












$begingroup$


One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.



But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?



So far, I tried by induction and by IBP but couldn't come to a simple closed form.



Thanks for your hints !










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
    $endgroup$
    – Crostul
    Jan 15 at 19:10
















4












$begingroup$


One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.



But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?



So far, I tried by induction and by IBP but couldn't come to a simple closed form.



Thanks for your hints !










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
    $endgroup$
    – Crostul
    Jan 15 at 19:10














4












4








4


1



$begingroup$


One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.



But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?



So far, I tried by induction and by IBP but couldn't come to a simple closed form.



Thanks for your hints !










share|cite|improve this question











$endgroup$




One can easily show that $intlimits_0^{pi}frac{cos(2k+1)x}{cos x} dx = 2 intlimits_0^{frac{pi}{2}}frac{cos(2k+1)x}{cos x} dx = (-1)^k pi$.



But is there a closed form for $intlimits_0^{frac{pi}{4}}frac{cos(2k+1)x}{cos x} dx$ ?



So far, I tried by induction and by IBP but couldn't come to a simple closed form.



Thanks for your hints !







integration definite-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 17:55









Did

249k23229468




249k23229468










asked Jan 15 at 17:41









fjaclotfjaclot

312




312








  • 1




    $begingroup$
    Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
    $endgroup$
    – Crostul
    Jan 15 at 19:10














  • 1




    $begingroup$
    Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
    $endgroup$
    – Crostul
    Jan 15 at 19:10








1




1




$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10




$begingroup$
Here is the example for $k=14$. It seems that the answer is $$(-1)^k left( frac{pi}{4} - sum_{n le k, nmbox{ odd}} frac{(-1)^n}{n} right)$$
$endgroup$
– Crostul
Jan 15 at 19:10










2 Answers
2






active

oldest

votes


















4












$begingroup$

A sketch:



Write
$$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
to obtain
begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
&= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
end{align}

for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    It is worthwhile to recall that for $ninBbb N$,
    $$cos nx=T_n(cos x)$$
    Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
    $$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
    Hence
    $$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
    $$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
    $$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
    $$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
    Then we focus on the integral
    $$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
    Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:



    Consider the integral
    $$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
    For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
    $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
    $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
    Then Recall the definition of the incomplete Beta function:
    $$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
    Thus
    $$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
    And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
    Thus
    $$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
    Which could be considered a closed form.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074697%2fis-there-a-closed-form-for-the-trigonometric-integral-int-limits-0-pi-4-fra%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      A sketch:



      Write
      $$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
      to obtain
      begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
      &= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
      end{align}

      for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        A sketch:



        Write
        $$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
        to obtain
        begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
        &= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
        end{align}

        for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          A sketch:



          Write
          $$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
          to obtain
          begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
          &= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
          end{align}

          for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .






          share|cite|improve this answer









          $endgroup$



          A sketch:



          Write
          $$ frac{cos((2k+1) x)}{cos(x)} = mathrm{e}^{2 k mathrm{i} x} frac{1+mathrm{e}^{-(2k+1) 2 mathrm{i} x}}{1+mathrm{e}^{-2mathrm{i}x}} = sum limits_{l=0}^{2k} (-1)^l mathrm{e}^{2 (k-l) mathrm{i} x} = (-1)^k left[1+2sum limits_{m=1}^k (-1)^m cos(2mx)right]$$
          to obtain
          begin{align} I_k &equiv int limits_0^{pi/4} frac{cos((2k+1) x)}{cos(x)} , mathrm{d} x = (-1)^k left[frac{pi}{4} + sum limits_{m=1}^k frac{(-1)^m}{m} sinleft(frac{mpi}{2}right)right] \
          &= (-1)^k left[frac{pi}{4} - sum limits_{n=0}^{lfloor frac{k-1}{2}rfloor} frac{(-1)^n}{2n+1}right]
          end{align}

          for $k in mathbb{N}_0$ in agreement with Crostul's comment. In particular, $ lim_{k to infty} I_k = 0$ .







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 15 at 19:22









          ComplexYetTrivialComplexYetTrivial

          5,1682631




          5,1682631























              0












              $begingroup$

              It is worthwhile to recall that for $ninBbb N$,
              $$cos nx=T_n(cos x)$$
              Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
              $$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
              Hence
              $$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
              $$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
              $$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
              $$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
              Then we focus on the integral
              $$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
              Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:



              Consider the integral
              $$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
              For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
              $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
              $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
              Then Recall the definition of the incomplete Beta function:
              $$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
              Thus
              $$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
              And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
              Thus
              $$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
              Which could be considered a closed form.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                It is worthwhile to recall that for $ninBbb N$,
                $$cos nx=T_n(cos x)$$
                Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
                $$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
                Hence
                $$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
                $$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
                $$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                $$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                Then we focus on the integral
                $$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
                Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:



                Consider the integral
                $$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
                For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
                $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
                $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
                Then Recall the definition of the incomplete Beta function:
                $$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
                Thus
                $$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
                And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                Thus
                $$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                Which could be considered a closed form.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  It is worthwhile to recall that for $ninBbb N$,
                  $$cos nx=T_n(cos x)$$
                  Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
                  $$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
                  Hence
                  $$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
                  $$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
                  $$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                  $$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                  Then we focus on the integral
                  $$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
                  Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:



                  Consider the integral
                  $$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
                  For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
                  $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
                  $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
                  Then Recall the definition of the incomplete Beta function:
                  $$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
                  Thus
                  $$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
                  And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                  Thus
                  $$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                  Which could be considered a closed form.






                  share|cite|improve this answer









                  $endgroup$



                  It is worthwhile to recall that for $ninBbb N$,
                  $$cos nx=T_n(cos x)$$
                  Where $T_n(x)$ is the Chebyshev polynomial of the first kind, defined as
                  $$T_n(x)=frac{n}2sum_{r=0}^{lfloor n/2rfloor}frac{(-1)^r}{n-r}{n-rchoose r}(2x)^{n-2r}$$
                  Hence
                  $$I_k=int_0^{pi/4}frac{cos[(2k+1)x]}{cos x}dx$$
                  $$I_k=int_0^{pi/4}frac{2k+1}{2cos x}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}(2cos x)^{2k-2r+1}dx$$
                  $$I_k=frac{2k+1}{2}sum_{r=0}^{lfloor frac{2k+1}2rfloor}frac{(-1)^r}{2k+1-r}{2k+1-rchoose r}2^{2k-2r+1}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                  $$I_k=(2k+1)sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}int_0^{pi/4}cos(x)^{2k-2r}dx$$
                  Then we focus on the integral
                  $$J(r,k)=int_0^{pi/4}cos(x)^{2(k-r)}dx$$
                  Unfortunately, the closest to a closed form for this guy is something in terms of the incomplete Beta function. Here's how:



                  Consider the integral
                  $$H(k;a,b)=int_0^ksin(x)^{a}cos(x)^{b}dt$$
                  For some $0leq kleq 1$. Making the substitution $t=sin(x)^2$, we see that
                  $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a-1}2}(1-t)^{frac{b-1}2}dt$$
                  $$H(k;a,b)=frac12int_0^{sin(k)^2}t^{frac{a+1}2-1}(1-t)^{frac{b+1}2-1}dt$$
                  Then Recall the definition of the incomplete Beta function:
                  $$mathrm{B}(x;a,b)=int_0^x t^{a-1}(1-t)^{b-1}dt$$
                  Thus
                  $$H(k;a,b)=frac12mathrm{B}bigg(sin(k)^2;frac{a+1}2,frac{b+1}2bigg)$$
                  And $$J(r,k)=H(pi/4;0,2k-2r)=frac12mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                  Thus
                  $$I_k=frac{2k+1}2sum_{r=0}^{k}frac{(-1)^r4^{k-r}}{2k-r+1}{2k-r+1choose r}mathrm{B}bigg(frac12;frac{1}2,k-r+frac{1}2bigg)$$
                  Which could be considered a closed form.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 15 at 19:47









                  clathratusclathratus

                  5,3041440




                  5,3041440






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074697%2fis-there-a-closed-form-for-the-trigonometric-integral-int-limits-0-pi-4-fra%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna