Solution to a second-order nonlinear ordinary differential equation
$begingroup$
I am given three functions $z'(t), y'(t), x'(t)$ and I have reduced these functions to the equation:
begin{equation}
z''=x_{0}beta z'e^{-frac{beta}{gamma}z} - gamma z
end{equation}
where $beta, gamma ,x_{0}$ are constants.
Next we introduce a new function:
begin{equation}
u(t)=e^{-frac{beta}{gamma}z}
end{equation}
Substitution yields
begin{equation}
ufrac{d^{2}u}{dt^{2}}- bigg(frac{du}{dt}bigg)^{2}+(gamma - x_{0}beta u)ufrac{du}{dt} = 0
end{equation}
Next a new function is introduced:
begin{equation}
phi = frac{dt}{du}
end{equation}
Now the equation can be rearranged to:
begin{equation}
frac{dphi}{du}+frac{1}{u} phi = (gamma-x_{0}beta u )phi^{2}
end{equation}
The solution to this equation is:
begin{equation}
phi = frac{1}{u(C_{1}-gamma ln u +x_{0}beta u)}
end{equation}
So what would be the solution to the original equation in terms of $u$?
real-analysis calculus ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
I am given three functions $z'(t), y'(t), x'(t)$ and I have reduced these functions to the equation:
begin{equation}
z''=x_{0}beta z'e^{-frac{beta}{gamma}z} - gamma z
end{equation}
where $beta, gamma ,x_{0}$ are constants.
Next we introduce a new function:
begin{equation}
u(t)=e^{-frac{beta}{gamma}z}
end{equation}
Substitution yields
begin{equation}
ufrac{d^{2}u}{dt^{2}}- bigg(frac{du}{dt}bigg)^{2}+(gamma - x_{0}beta u)ufrac{du}{dt} = 0
end{equation}
Next a new function is introduced:
begin{equation}
phi = frac{dt}{du}
end{equation}
Now the equation can be rearranged to:
begin{equation}
frac{dphi}{du}+frac{1}{u} phi = (gamma-x_{0}beta u )phi^{2}
end{equation}
The solution to this equation is:
begin{equation}
phi = frac{1}{u(C_{1}-gamma ln u +x_{0}beta u)}
end{equation}
So what would be the solution to the original equation in terms of $u$?
real-analysis calculus ordinary-differential-equations
$endgroup$
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31
add a comment |
$begingroup$
I am given three functions $z'(t), y'(t), x'(t)$ and I have reduced these functions to the equation:
begin{equation}
z''=x_{0}beta z'e^{-frac{beta}{gamma}z} - gamma z
end{equation}
where $beta, gamma ,x_{0}$ are constants.
Next we introduce a new function:
begin{equation}
u(t)=e^{-frac{beta}{gamma}z}
end{equation}
Substitution yields
begin{equation}
ufrac{d^{2}u}{dt^{2}}- bigg(frac{du}{dt}bigg)^{2}+(gamma - x_{0}beta u)ufrac{du}{dt} = 0
end{equation}
Next a new function is introduced:
begin{equation}
phi = frac{dt}{du}
end{equation}
Now the equation can be rearranged to:
begin{equation}
frac{dphi}{du}+frac{1}{u} phi = (gamma-x_{0}beta u )phi^{2}
end{equation}
The solution to this equation is:
begin{equation}
phi = frac{1}{u(C_{1}-gamma ln u +x_{0}beta u)}
end{equation}
So what would be the solution to the original equation in terms of $u$?
real-analysis calculus ordinary-differential-equations
$endgroup$
I am given three functions $z'(t), y'(t), x'(t)$ and I have reduced these functions to the equation:
begin{equation}
z''=x_{0}beta z'e^{-frac{beta}{gamma}z} - gamma z
end{equation}
where $beta, gamma ,x_{0}$ are constants.
Next we introduce a new function:
begin{equation}
u(t)=e^{-frac{beta}{gamma}z}
end{equation}
Substitution yields
begin{equation}
ufrac{d^{2}u}{dt^{2}}- bigg(frac{du}{dt}bigg)^{2}+(gamma - x_{0}beta u)ufrac{du}{dt} = 0
end{equation}
Next a new function is introduced:
begin{equation}
phi = frac{dt}{du}
end{equation}
Now the equation can be rearranged to:
begin{equation}
frac{dphi}{du}+frac{1}{u} phi = (gamma-x_{0}beta u )phi^{2}
end{equation}
The solution to this equation is:
begin{equation}
phi = frac{1}{u(C_{1}-gamma ln u +x_{0}beta u)}
end{equation}
So what would be the solution to the original equation in terms of $u$?
real-analysis calculus ordinary-differential-equations
real-analysis calculus ordinary-differential-equations
asked Jan 15 at 17:10
wittgensteinsrulerwittgensteinsruler
243
243
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31
add a comment |
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The last equation od
$$
frac{dt}{du}=frac{1}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
Integrating
$$
t=intfrac{du}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
I do not think that there is a closed formula for the integral.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074656%2fsolution-to-a-second-order-nonlinear-ordinary-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The last equation od
$$
frac{dt}{du}=frac{1}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
Integrating
$$
t=intfrac{du}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
I do not think that there is a closed formula for the integral.
$endgroup$
add a comment |
$begingroup$
The last equation od
$$
frac{dt}{du}=frac{1}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
Integrating
$$
t=intfrac{du}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
I do not think that there is a closed formula for the integral.
$endgroup$
add a comment |
$begingroup$
The last equation od
$$
frac{dt}{du}=frac{1}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
Integrating
$$
t=intfrac{du}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
I do not think that there is a closed formula for the integral.
$endgroup$
The last equation od
$$
frac{dt}{du}=frac{1}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
Integrating
$$
t=intfrac{du}{u(C_{1}-gamma ln u +x_{0}beta, u)}.
$$
I do not think that there is a closed formula for the integral.
answered Jan 15 at 22:52
Julián AguirreJulián Aguirre
69.5k24297
69.5k24297
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3074656%2fsolution-to-a-second-order-nonlinear-ordinary-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The ordinary differential equation (ODE) that you write down for $u$ is equivalent to $z'' = x_0 beta z' e^{-frac{beta}{gamma} z} - gamma z'$. So there is either a mistake in the original ODE for $z$ or in the ODE for $u$. Please check.
$endgroup$
– Christoph
Jan 16 at 2:31