Expected values of squares











up vote
2
down vote

favorite












Question A fair coin is tossed three times. Let Y be the random variable that denotes the square of the number of heads. For example, in the outcome HTH, there are two heads and Y = 4. What is E[Y]?



My answer:



possible outcomes to toss a coin three times : 0, 1, 2, 3
possible outcomes of Y : 0, 1, 4, 9
E[Y] = (1/6 * 0) + (1/6 * 1) + (1/6 * 4) + (1/6 * 9)



Is it ok? Thanks!










share|cite|improve this question






















  • Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
    – lulu
    Dec 4 at 19:57















up vote
2
down vote

favorite












Question A fair coin is tossed three times. Let Y be the random variable that denotes the square of the number of heads. For example, in the outcome HTH, there are two heads and Y = 4. What is E[Y]?



My answer:



possible outcomes to toss a coin three times : 0, 1, 2, 3
possible outcomes of Y : 0, 1, 4, 9
E[Y] = (1/6 * 0) + (1/6 * 1) + (1/6 * 4) + (1/6 * 9)



Is it ok? Thanks!










share|cite|improve this question






















  • Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
    – lulu
    Dec 4 at 19:57













up vote
2
down vote

favorite









up vote
2
down vote

favorite











Question A fair coin is tossed three times. Let Y be the random variable that denotes the square of the number of heads. For example, in the outcome HTH, there are two heads and Y = 4. What is E[Y]?



My answer:



possible outcomes to toss a coin three times : 0, 1, 2, 3
possible outcomes of Y : 0, 1, 4, 9
E[Y] = (1/6 * 0) + (1/6 * 1) + (1/6 * 4) + (1/6 * 9)



Is it ok? Thanks!










share|cite|improve this question













Question A fair coin is tossed three times. Let Y be the random variable that denotes the square of the number of heads. For example, in the outcome HTH, there are two heads and Y = 4. What is E[Y]?



My answer:



possible outcomes to toss a coin three times : 0, 1, 2, 3
possible outcomes of Y : 0, 1, 4, 9
E[Y] = (1/6 * 0) + (1/6 * 1) + (1/6 * 4) + (1/6 * 9)



Is it ok? Thanks!







probability discrete-mathematics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 4 at 19:50









John

345




345












  • Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
    – lulu
    Dec 4 at 19:57


















  • Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
    – lulu
    Dec 4 at 19:57
















Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
– lulu
Dec 4 at 19:57




Where do the factors of $frac 16$ come from? For example, there is only one way to get $Y=3$ so the coefficient of $9$ should be $frac 18$.
– lulu
Dec 4 at 19:57










3 Answers
3






active

oldest

votes

















up vote
1
down vote













$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$




$ds{h: HEAD. t: TOSSES}$.




begin{align}
&bbox[10px,#ffd]{sum_{h = 0}^{t}{t choose h}
pars{1 over 2}^{t - h}pars{1 over 2}^{h}h^{2}} =
left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}sum_{h = 0}^{t}
{t choose h}x^{h},rightvert_{ x = 1}
\[5mm] = &
left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}pars{1 + x}^{t},rightvert_{ x = 1} =
left.{1 over 2^{t}},x,partiald{}{x}txpars{1 + x}^{t - 1}
,rightvert_{ x = 1}
\[5mm] = &
{t over 2^{t}},xbracks{%
pars{1 + x}^{t - 1} + xpars{t - 1}pars{1 + x}^{t - 2}}
_{ x = 1}
\[5mm] = &
{t over 2^{t}}bracks{2^{t - 1} + pars{t - 1}2^{t - 2}}
=
{1 over 2},t + {1 over 4},tpars{t - 1} =
bbx{tpars{t + 1} over 4}
end{align}






share|cite|improve this answer




























    up vote
    0
    down vote













    In general for $n$ tosses
    $$
    mathbf{E} = sum_{i=0}^n{n choose i}left(frac1{2}right)^{!!n} i^2
    $$






    share|cite|improve this answer





















    • I think simplifies to $frac{n(n+1)}{4}$
      – karakfa
      Dec 4 at 20:19




















    up vote
    0
    down vote













    In this particular case the probabilities of 0, 1, 2, and 3 heads are 1/8, 3/8, 3/8, 1/8 and so



    $$ E(Y) = (1/8) times 0^2 + (3/8) times 1^2 + (3/8) times 2^2 + (1/8) times 3^2 = 3. $$



    In general for $n$ tosses, you have $E(Y) = E(X^2)$ where $X$ is a binomial(n, 1/2) random variable. Furthermore $E(X^2) = E(X)^2 + Var(X)$. It's well-known that $E(X) = n/2, Var(X) = n/4$, and so you have $E(X)^2 = (n/2)^2 + n/4 = n(n+1)/4$. Felix Marin already proved this by a different route.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026066%2fexpected-values-of-squares%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote













      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      $ds{h: HEAD. t: TOSSES}$.




      begin{align}
      &bbox[10px,#ffd]{sum_{h = 0}^{t}{t choose h}
      pars{1 over 2}^{t - h}pars{1 over 2}^{h}h^{2}} =
      left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}sum_{h = 0}^{t}
      {t choose h}x^{h},rightvert_{ x = 1}
      \[5mm] = &
      left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}pars{1 + x}^{t},rightvert_{ x = 1} =
      left.{1 over 2^{t}},x,partiald{}{x}txpars{1 + x}^{t - 1}
      ,rightvert_{ x = 1}
      \[5mm] = &
      {t over 2^{t}},xbracks{%
      pars{1 + x}^{t - 1} + xpars{t - 1}pars{1 + x}^{t - 2}}
      _{ x = 1}
      \[5mm] = &
      {t over 2^{t}}bracks{2^{t - 1} + pars{t - 1}2^{t - 2}}
      =
      {1 over 2},t + {1 over 4},tpars{t - 1} =
      bbx{tpars{t + 1} over 4}
      end{align}






      share|cite|improve this answer

























        up vote
        1
        down vote













        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$




        $ds{h: HEAD. t: TOSSES}$.




        begin{align}
        &bbox[10px,#ffd]{sum_{h = 0}^{t}{t choose h}
        pars{1 over 2}^{t - h}pars{1 over 2}^{h}h^{2}} =
        left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}sum_{h = 0}^{t}
        {t choose h}x^{h},rightvert_{ x = 1}
        \[5mm] = &
        left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}pars{1 + x}^{t},rightvert_{ x = 1} =
        left.{1 over 2^{t}},x,partiald{}{x}txpars{1 + x}^{t - 1}
        ,rightvert_{ x = 1}
        \[5mm] = &
        {t over 2^{t}},xbracks{%
        pars{1 + x}^{t - 1} + xpars{t - 1}pars{1 + x}^{t - 2}}
        _{ x = 1}
        \[5mm] = &
        {t over 2^{t}}bracks{2^{t - 1} + pars{t - 1}2^{t - 2}}
        =
        {1 over 2},t + {1 over 4},tpars{t - 1} =
        bbx{tpars{t + 1} over 4}
        end{align}






        share|cite|improve this answer























          up vote
          1
          down vote










          up vote
          1
          down vote









          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$




          $ds{h: HEAD. t: TOSSES}$.




          begin{align}
          &bbox[10px,#ffd]{sum_{h = 0}^{t}{t choose h}
          pars{1 over 2}^{t - h}pars{1 over 2}^{h}h^{2}} =
          left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}sum_{h = 0}^{t}
          {t choose h}x^{h},rightvert_{ x = 1}
          \[5mm] = &
          left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}pars{1 + x}^{t},rightvert_{ x = 1} =
          left.{1 over 2^{t}},x,partiald{}{x}txpars{1 + x}^{t - 1}
          ,rightvert_{ x = 1}
          \[5mm] = &
          {t over 2^{t}},xbracks{%
          pars{1 + x}^{t - 1} + xpars{t - 1}pars{1 + x}^{t - 2}}
          _{ x = 1}
          \[5mm] = &
          {t over 2^{t}}bracks{2^{t - 1} + pars{t - 1}2^{t - 2}}
          =
          {1 over 2},t + {1 over 4},tpars{t - 1} =
          bbx{tpars{t + 1} over 4}
          end{align}






          share|cite|improve this answer












          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$




          $ds{h: HEAD. t: TOSSES}$.




          begin{align}
          &bbox[10px,#ffd]{sum_{h = 0}^{t}{t choose h}
          pars{1 over 2}^{t - h}pars{1 over 2}^{h}h^{2}} =
          left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}sum_{h = 0}^{t}
          {t choose h}x^{h},rightvert_{ x = 1}
          \[5mm] = &
          left.{1 over 2^{t}},pars{x,partiald{}{x}}^{2}pars{1 + x}^{t},rightvert_{ x = 1} =
          left.{1 over 2^{t}},x,partiald{}{x}txpars{1 + x}^{t - 1}
          ,rightvert_{ x = 1}
          \[5mm] = &
          {t over 2^{t}},xbracks{%
          pars{1 + x}^{t - 1} + xpars{t - 1}pars{1 + x}^{t - 2}}
          _{ x = 1}
          \[5mm] = &
          {t over 2^{t}}bracks{2^{t - 1} + pars{t - 1}2^{t - 2}}
          =
          {1 over 2},t + {1 over 4},tpars{t - 1} =
          bbx{tpars{t + 1} over 4}
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 4 at 20:21









          Felix Marin

          66.8k7107139




          66.8k7107139






















              up vote
              0
              down vote













              In general for $n$ tosses
              $$
              mathbf{E} = sum_{i=0}^n{n choose i}left(frac1{2}right)^{!!n} i^2
              $$






              share|cite|improve this answer





















              • I think simplifies to $frac{n(n+1)}{4}$
                – karakfa
                Dec 4 at 20:19

















              up vote
              0
              down vote













              In general for $n$ tosses
              $$
              mathbf{E} = sum_{i=0}^n{n choose i}left(frac1{2}right)^{!!n} i^2
              $$






              share|cite|improve this answer





















              • I think simplifies to $frac{n(n+1)}{4}$
                – karakfa
                Dec 4 at 20:19















              up vote
              0
              down vote










              up vote
              0
              down vote









              In general for $n$ tosses
              $$
              mathbf{E} = sum_{i=0}^n{n choose i}left(frac1{2}right)^{!!n} i^2
              $$






              share|cite|improve this answer












              In general for $n$ tosses
              $$
              mathbf{E} = sum_{i=0}^n{n choose i}left(frac1{2}right)^{!!n} i^2
              $$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 4 at 20:09









              karakfa

              1,943811




              1,943811












              • I think simplifies to $frac{n(n+1)}{4}$
                – karakfa
                Dec 4 at 20:19




















              • I think simplifies to $frac{n(n+1)}{4}$
                – karakfa
                Dec 4 at 20:19


















              I think simplifies to $frac{n(n+1)}{4}$
              – karakfa
              Dec 4 at 20:19






              I think simplifies to $frac{n(n+1)}{4}$
              – karakfa
              Dec 4 at 20:19












              up vote
              0
              down vote













              In this particular case the probabilities of 0, 1, 2, and 3 heads are 1/8, 3/8, 3/8, 1/8 and so



              $$ E(Y) = (1/8) times 0^2 + (3/8) times 1^2 + (3/8) times 2^2 + (1/8) times 3^2 = 3. $$



              In general for $n$ tosses, you have $E(Y) = E(X^2)$ where $X$ is a binomial(n, 1/2) random variable. Furthermore $E(X^2) = E(X)^2 + Var(X)$. It's well-known that $E(X) = n/2, Var(X) = n/4$, and so you have $E(X)^2 = (n/2)^2 + n/4 = n(n+1)/4$. Felix Marin already proved this by a different route.






              share|cite|improve this answer

























                up vote
                0
                down vote













                In this particular case the probabilities of 0, 1, 2, and 3 heads are 1/8, 3/8, 3/8, 1/8 and so



                $$ E(Y) = (1/8) times 0^2 + (3/8) times 1^2 + (3/8) times 2^2 + (1/8) times 3^2 = 3. $$



                In general for $n$ tosses, you have $E(Y) = E(X^2)$ where $X$ is a binomial(n, 1/2) random variable. Furthermore $E(X^2) = E(X)^2 + Var(X)$. It's well-known that $E(X) = n/2, Var(X) = n/4$, and so you have $E(X)^2 = (n/2)^2 + n/4 = n(n+1)/4$. Felix Marin already proved this by a different route.






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  In this particular case the probabilities of 0, 1, 2, and 3 heads are 1/8, 3/8, 3/8, 1/8 and so



                  $$ E(Y) = (1/8) times 0^2 + (3/8) times 1^2 + (3/8) times 2^2 + (1/8) times 3^2 = 3. $$



                  In general for $n$ tosses, you have $E(Y) = E(X^2)$ where $X$ is a binomial(n, 1/2) random variable. Furthermore $E(X^2) = E(X)^2 + Var(X)$. It's well-known that $E(X) = n/2, Var(X) = n/4$, and so you have $E(X)^2 = (n/2)^2 + n/4 = n(n+1)/4$. Felix Marin already proved this by a different route.






                  share|cite|improve this answer












                  In this particular case the probabilities of 0, 1, 2, and 3 heads are 1/8, 3/8, 3/8, 1/8 and so



                  $$ E(Y) = (1/8) times 0^2 + (3/8) times 1^2 + (3/8) times 2^2 + (1/8) times 3^2 = 3. $$



                  In general for $n$ tosses, you have $E(Y) = E(X^2)$ where $X$ is a binomial(n, 1/2) random variable. Furthermore $E(X^2) = E(X)^2 + Var(X)$. It's well-known that $E(X) = n/2, Var(X) = n/4$, and so you have $E(X)^2 = (n/2)^2 + n/4 = n(n+1)/4$. Felix Marin already proved this by a different route.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 4 at 20:47









                  Michael Lugo

                  17.9k33576




                  17.9k33576






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026066%2fexpected-values-of-squares%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna