Finding the joint mgf of two random variables given conditions












0












$begingroup$



Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common



$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$



for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$
and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.




I need help solving this problem. So we want to find



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$



I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.





EDIT: We can write



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$



First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$



EDIT 2: Using an integration table, we get



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$



Similarly,



$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$



So, the moment generating function is given by



$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$



But, the exponent of $e$ can be rewritten as



$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$



So, our moment generating function is given by



$$e^{s^2 + t^2}/2 $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 19:50












  • $begingroup$
    @TkiDeneb think i figured it out ur way. can u check?
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:18










  • $begingroup$
    I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 20:46












  • $begingroup$
    okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:51
















0












$begingroup$



Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common



$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$



for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$
and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.




I need help solving this problem. So we want to find



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$



I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.





EDIT: We can write



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$



First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$



EDIT 2: Using an integration table, we get



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$



Similarly,



$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$



So, the moment generating function is given by



$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$



But, the exponent of $e$ can be rewritten as



$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$



So, our moment generating function is given by



$$e^{s^2 + t^2}/2 $$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 19:50












  • $begingroup$
    @TkiDeneb think i figured it out ur way. can u check?
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:18










  • $begingroup$
    I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 20:46












  • $begingroup$
    okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:51














0












0








0





$begingroup$



Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common



$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$



for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$
and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.




I need help solving this problem. So we want to find



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$



I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.





EDIT: We can write



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$



First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$



EDIT 2: Using an integration table, we get



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$



Similarly,



$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$



So, the moment generating function is given by



$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$



But, the exponent of $e$ can be rewritten as



$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$



So, our moment generating function is given by



$$e^{s^2 + t^2}/2 $$










share|cite|improve this question











$endgroup$





Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common



$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$



for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$
and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.




I need help solving this problem. So we want to find



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$



I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.





EDIT: We can write



$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$



First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$



EDIT 2: Using an integration table, we get



$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$



Similarly,



$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$



So, the moment generating function is given by



$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$



But, the exponent of $e$ can be rewritten as



$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$



So, our moment generating function is given by



$$e^{s^2 + t^2}/2 $$







probability probability-theory probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 20:18







stackofhay42

















asked Dec 16 '18 at 19:34









stackofhay42stackofhay42

1836




1836












  • $begingroup$
    Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 19:50












  • $begingroup$
    @TkiDeneb think i figured it out ur way. can u check?
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:18










  • $begingroup$
    I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 20:46












  • $begingroup$
    okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:51


















  • $begingroup$
    Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 19:50












  • $begingroup$
    @TkiDeneb think i figured it out ur way. can u check?
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:18










  • $begingroup$
    I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
    $endgroup$
    – Tki Deneb
    Dec 16 '18 at 20:46












  • $begingroup$
    okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
    $endgroup$
    – stackofhay42
    Dec 16 '18 at 20:51
















$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50






$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50














$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– stackofhay42
Dec 16 '18 at 20:18




$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– stackofhay42
Dec 16 '18 at 20:18












$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46






$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46














$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– stackofhay42
Dec 16 '18 at 20:51




$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– stackofhay42
Dec 16 '18 at 20:51










1 Answer
1






active

oldest

votes


















1












$begingroup$

We can directly use the indepencence of $X_1$ and $X_2$:



$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$



Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043062%2ffinding-the-joint-mgf-of-two-random-variables-given-conditions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We can directly use the indepencence of $X_1$ and $X_2$:



    $$
    Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
    $$



    Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
    $$
    Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
    $$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We can directly use the indepencence of $X_1$ and $X_2$:



      $$
      Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
      $$



      Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
      $$
      Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
      $$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We can directly use the indepencence of $X_1$ and $X_2$:



        $$
        Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
        $$



        Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
        $$
        Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
        $$






        share|cite|improve this answer









        $endgroup$



        We can directly use the indepencence of $X_1$ and $X_2$:



        $$
        Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
        $$



        Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
        $$
        Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 16 '18 at 21:10









        Tki DenebTki Deneb

        32710




        32710






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043062%2ffinding-the-joint-mgf-of-two-random-variables-given-conditions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna