How to classify the degenerate stationary points of a multivariate function?
I have a multivariate function in one of whose critical points the Hessian matrix is singular. Is there any general method to determine the type of this critical point? Would be worth plotting the function in the direction of the eigenvector associated to a zero eigenvalue of the Hessian matrix?
Suppose that there is a function $fleft( mathbf{x}_0 + mathbf{xi } right) approx fleft( {{mathbf{x}}_{0}} right)+frac{1}{2}{{mathbf{xi }}^{text{T}}}mathbf{H}mathbf{xi }$, where $mathbf{x}_0$ is a given stationary point, $mathbf{xi}=mathbf{x}-mathbf{x}_0$ is the vector of relative coordinates, and $mathbf{H}=mathbf{H}left( {{mathbf{x}}_{0}} right)$ is the Hessian matrix at $mathbf{x}=mathbf{x}_0$.
Then we can obtain the following form: $gleft( mathbf{zeta } right)=2left[ fleft( {{mathbf{z}}_{0}}+mathbf{zeta } right)-fleft( {{mathbf{z}}_{0}} right) right]={{mathbf{zeta }}^{text{T}}}text{diag}left( {{lambda }_{i}} right)mathbf{zeta }$, where ${{mathbf{z}}_{0}}={{mathbf{V}}^{text{T}}}{{mathbf{x}}_{0}}$ and $mathbf{zeta }={{mathbf{V}}^{text{T}}}mathbf{xi }$, $lambda_i$ is the $i$th eigenvalue of H, and V is the eigenvector matrix of H. What should I plot to see the behavior of the function around $mathbf{x}_0$?
multivariable-calculus hessian-matrix
add a comment |
I have a multivariate function in one of whose critical points the Hessian matrix is singular. Is there any general method to determine the type of this critical point? Would be worth plotting the function in the direction of the eigenvector associated to a zero eigenvalue of the Hessian matrix?
Suppose that there is a function $fleft( mathbf{x}_0 + mathbf{xi } right) approx fleft( {{mathbf{x}}_{0}} right)+frac{1}{2}{{mathbf{xi }}^{text{T}}}mathbf{H}mathbf{xi }$, where $mathbf{x}_0$ is a given stationary point, $mathbf{xi}=mathbf{x}-mathbf{x}_0$ is the vector of relative coordinates, and $mathbf{H}=mathbf{H}left( {{mathbf{x}}_{0}} right)$ is the Hessian matrix at $mathbf{x}=mathbf{x}_0$.
Then we can obtain the following form: $gleft( mathbf{zeta } right)=2left[ fleft( {{mathbf{z}}_{0}}+mathbf{zeta } right)-fleft( {{mathbf{z}}_{0}} right) right]={{mathbf{zeta }}^{text{T}}}text{diag}left( {{lambda }_{i}} right)mathbf{zeta }$, where ${{mathbf{z}}_{0}}={{mathbf{V}}^{text{T}}}{{mathbf{x}}_{0}}$ and $mathbf{zeta }={{mathbf{V}}^{text{T}}}mathbf{xi }$, $lambda_i$ is the $i$th eigenvalue of H, and V is the eigenvector matrix of H. What should I plot to see the behavior of the function around $mathbf{x}_0$?
multivariable-calculus hessian-matrix
add a comment |
I have a multivariate function in one of whose critical points the Hessian matrix is singular. Is there any general method to determine the type of this critical point? Would be worth plotting the function in the direction of the eigenvector associated to a zero eigenvalue of the Hessian matrix?
Suppose that there is a function $fleft( mathbf{x}_0 + mathbf{xi } right) approx fleft( {{mathbf{x}}_{0}} right)+frac{1}{2}{{mathbf{xi }}^{text{T}}}mathbf{H}mathbf{xi }$, where $mathbf{x}_0$ is a given stationary point, $mathbf{xi}=mathbf{x}-mathbf{x}_0$ is the vector of relative coordinates, and $mathbf{H}=mathbf{H}left( {{mathbf{x}}_{0}} right)$ is the Hessian matrix at $mathbf{x}=mathbf{x}_0$.
Then we can obtain the following form: $gleft( mathbf{zeta } right)=2left[ fleft( {{mathbf{z}}_{0}}+mathbf{zeta } right)-fleft( {{mathbf{z}}_{0}} right) right]={{mathbf{zeta }}^{text{T}}}text{diag}left( {{lambda }_{i}} right)mathbf{zeta }$, where ${{mathbf{z}}_{0}}={{mathbf{V}}^{text{T}}}{{mathbf{x}}_{0}}$ and $mathbf{zeta }={{mathbf{V}}^{text{T}}}mathbf{xi }$, $lambda_i$ is the $i$th eigenvalue of H, and V is the eigenvector matrix of H. What should I plot to see the behavior of the function around $mathbf{x}_0$?
multivariable-calculus hessian-matrix
I have a multivariate function in one of whose critical points the Hessian matrix is singular. Is there any general method to determine the type of this critical point? Would be worth plotting the function in the direction of the eigenvector associated to a zero eigenvalue of the Hessian matrix?
Suppose that there is a function $fleft( mathbf{x}_0 + mathbf{xi } right) approx fleft( {{mathbf{x}}_{0}} right)+frac{1}{2}{{mathbf{xi }}^{text{T}}}mathbf{H}mathbf{xi }$, where $mathbf{x}_0$ is a given stationary point, $mathbf{xi}=mathbf{x}-mathbf{x}_0$ is the vector of relative coordinates, and $mathbf{H}=mathbf{H}left( {{mathbf{x}}_{0}} right)$ is the Hessian matrix at $mathbf{x}=mathbf{x}_0$.
Then we can obtain the following form: $gleft( mathbf{zeta } right)=2left[ fleft( {{mathbf{z}}_{0}}+mathbf{zeta } right)-fleft( {{mathbf{z}}_{0}} right) right]={{mathbf{zeta }}^{text{T}}}text{diag}left( {{lambda }_{i}} right)mathbf{zeta }$, where ${{mathbf{z}}_{0}}={{mathbf{V}}^{text{T}}}{{mathbf{x}}_{0}}$ and $mathbf{zeta }={{mathbf{V}}^{text{T}}}mathbf{xi }$, $lambda_i$ is the $i$th eigenvalue of H, and V is the eigenvector matrix of H. What should I plot to see the behavior of the function around $mathbf{x}_0$?
multivariable-calculus hessian-matrix
multivariable-calculus hessian-matrix
edited Dec 11 '18 at 8:54
asked Dec 10 '18 at 13:44
Roloka
566
566
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033929%2fhow-to-classify-the-degenerate-stationary-points-of-a-multivariate-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033929%2fhow-to-classify-the-degenerate-stationary-points-of-a-multivariate-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown