If we want $int_0^⋅XdM$ to be a martingale, do we need to assume $E[int_0^tX_sd[M]_s]<∞$ for all $t$...












0












$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$


  • $(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$


  • $(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$

  • $Tin[0,infty]$


In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$



Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    (1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
    $endgroup$
    – saz
    Dec 19 '18 at 16:31










  • $begingroup$
    @saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
    $endgroup$
    – 0xbadf00d
    Dec 19 '18 at 18:07










  • $begingroup$
    Yes, exactly...
    $endgroup$
    – saz
    Dec 20 '18 at 6:03










  • $begingroup$
    @saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
    $endgroup$
    – 0xbadf00d
    Dec 21 '18 at 18:05
















0












$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$


  • $(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$


  • $(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$

  • $Tin[0,infty]$


In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$



Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    (1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
    $endgroup$
    – saz
    Dec 19 '18 at 16:31










  • $begingroup$
    @saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
    $endgroup$
    – 0xbadf00d
    Dec 19 '18 at 18:07










  • $begingroup$
    Yes, exactly...
    $endgroup$
    – saz
    Dec 20 '18 at 6:03










  • $begingroup$
    @saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
    $endgroup$
    – 0xbadf00d
    Dec 21 '18 at 18:05














0












0








0





$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$


  • $(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$


  • $(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$

  • $Tin[0,infty]$


In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$



Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?










share|cite|improve this question









$endgroup$




Let





  • $(Omega,mathcal A,operatorname P)$ be a complete probability space


  • $(mathcal F_t)_{tge0}$ be a complete and right-continuous filtration on $(Omega,mathcal A,operatorname P)$


  • $(M_t)_{tge0}$ be a real-valued continous square-integrable $mathcal F$-martingale on $(Omega,mathcal A,operatorname P)$


  • $(X_t)_{tge0}$ be a real-valued $mathcal F$-predictable process on $(Omega,mathcal A,operatorname P)$

  • $Tin[0,infty]$


In the construction of the Itō integral process $$Xcdot M=left(int_0^tX_s:{rm d}M_sright)_{tge0}$$ as a square-integrable martingale, do we need to assume $$operatorname Eleft[int_0^t|X_s|^2:{rm d}[M]_sright]<infty;;;text{for all }tin[0,T]setminusleft{inftyright}tag1$$ or even $$operatorname Eleft[int_0^T|X_s|^2:{rm d}[M]_sright]<inftytag2?$$



Clearly, the question is trivial if $T<infty$ and the whole construction is absolutely clear to me in that case. But what if $T=infty$? Is there any reason why we should even need $(2)$?







probability-theory stochastic-processes stochastic-calculus stochastic-integrals stochastic-analysis






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 19 '18 at 16:07









0xbadf00d0xbadf00d

1,92141530




1,92141530












  • $begingroup$
    (1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
    $endgroup$
    – saz
    Dec 19 '18 at 16:31










  • $begingroup$
    @saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
    $endgroup$
    – 0xbadf00d
    Dec 19 '18 at 18:07










  • $begingroup$
    Yes, exactly...
    $endgroup$
    – saz
    Dec 20 '18 at 6:03










  • $begingroup$
    @saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
    $endgroup$
    – 0xbadf00d
    Dec 21 '18 at 18:05


















  • $begingroup$
    (1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
    $endgroup$
    – saz
    Dec 19 '18 at 16:31










  • $begingroup$
    @saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
    $endgroup$
    – 0xbadf00d
    Dec 19 '18 at 18:07










  • $begingroup$
    Yes, exactly...
    $endgroup$
    – saz
    Dec 20 '18 at 6:03










  • $begingroup$
    @saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
    $endgroup$
    – 0xbadf00d
    Dec 21 '18 at 18:05
















$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31




$begingroup$
(1) is enough to get a martingale. If you want e.g. an $L^2$-bounded martingale then you will need (2).
$endgroup$
– saz
Dec 19 '18 at 16:31












$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07




$begingroup$
@saz So, $(2)$ if we want, for example, define $(Xcdot M)_infty$.
$endgroup$
– 0xbadf00d
Dec 19 '18 at 18:07












$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03




$begingroup$
Yes, exactly...
$endgroup$
– saz
Dec 20 '18 at 6:03












$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05




$begingroup$
@saz Could you please take a look at this question: math.stackexchange.com/questions/3048457/…
$endgroup$
– 0xbadf00d
Dec 21 '18 at 18:05










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046553%2fif-we-want-int-0%25e2%258b%2585xdm-to-be-a-martingale-do-we-need-to-assume-e-int-0tx-s%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046553%2fif-we-want-int-0%25e2%258b%2585xdm-to-be-a-martingale-do-we-need-to-assume-e-int-0tx-s%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna