Oil Drill's Equation of Motion
$begingroup$
I need to find equation of motion for the following system:
https://i.stack.imgur.com/d236l.jpg
Parameter of the system are $J_T, J_B, theta_T, theta_B, T_f $
I derived two equation, but i am not sure that is true.
For Table/Top:
begin{equation}label{eq:1}
dot{omega}_T(t)=-frac{b}{J_T}omega_T(t)-bigg[frac{k}{J_T}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]+frac{1}{J_T}T(t)
end{equation}
For Bit/Bottom:
begin{equation}label{eq:2}
dot{omega}_B(t)=-frac{b}{J_B}omega_B(t)+bigg[frac{k}{J_B}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]-frac{1}{J_B}T_f(t)
end{equation}
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
I need to find equation of motion for the following system:
https://i.stack.imgur.com/d236l.jpg
Parameter of the system are $J_T, J_B, theta_T, theta_B, T_f $
I derived two equation, but i am not sure that is true.
For Table/Top:
begin{equation}label{eq:1}
dot{omega}_T(t)=-frac{b}{J_T}omega_T(t)-bigg[frac{k}{J_T}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]+frac{1}{J_T}T(t)
end{equation}
For Bit/Bottom:
begin{equation}label{eq:2}
dot{omega}_B(t)=-frac{b}{J_B}omega_B(t)+bigg[frac{k}{J_B}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]-frac{1}{J_B}T_f(t)
end{equation}
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
I need to find equation of motion for the following system:
https://i.stack.imgur.com/d236l.jpg
Parameter of the system are $J_T, J_B, theta_T, theta_B, T_f $
I derived two equation, but i am not sure that is true.
For Table/Top:
begin{equation}label{eq:1}
dot{omega}_T(t)=-frac{b}{J_T}omega_T(t)-bigg[frac{k}{J_T}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]+frac{1}{J_T}T(t)
end{equation}
For Bit/Bottom:
begin{equation}label{eq:2}
dot{omega}_B(t)=-frac{b}{J_B}omega_B(t)+bigg[frac{k}{J_B}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]-frac{1}{J_B}T_f(t)
end{equation}
ordinary-differential-equations
$endgroup$
I need to find equation of motion for the following system:
https://i.stack.imgur.com/d236l.jpg
Parameter of the system are $J_T, J_B, theta_T, theta_B, T_f $
I derived two equation, but i am not sure that is true.
For Table/Top:
begin{equation}label{eq:1}
dot{omega}_T(t)=-frac{b}{J_T}omega_T(t)-bigg[frac{k}{J_T}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]+frac{1}{J_T}T(t)
end{equation}
For Bit/Bottom:
begin{equation}label{eq:2}
dot{omega}_B(t)=-frac{b}{J_B}omega_B(t)+bigg[frac{k}{J_B}theta_T(t)-frac{k}{J_T}theta_B(t)bigg]-frac{1}{J_B}T_f(t)
end{equation}
ordinary-differential-equations
ordinary-differential-equations
asked Dec 15 '18 at 6:20
SquanchSquanch
353
353
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Considering the kinetic energy
$$
E = frac 12 J_Bomega_B^2+frac 12 J_Tomega_b^T+frac 12 k(theta_B-theta_T)^2
$$
the motion equations are derived according Euler-Lagrange
$$
frac{partial E}{partial theta}-frac{d}{dt}frac{partial E}{partialomega} = tau
$$
so we have
$$
k(theta_B-theta_T)+J_Bdotomega_B + bomega_B = -T_f\
-k(theta_B-theta_T)+J_Tdotomega_T + bomega_T = T
$$
Here $dotomega = ddottheta$
$endgroup$
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040224%2foil-drills-equation-of-motion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Considering the kinetic energy
$$
E = frac 12 J_Bomega_B^2+frac 12 J_Tomega_b^T+frac 12 k(theta_B-theta_T)^2
$$
the motion equations are derived according Euler-Lagrange
$$
frac{partial E}{partial theta}-frac{d}{dt}frac{partial E}{partialomega} = tau
$$
so we have
$$
k(theta_B-theta_T)+J_Bdotomega_B + bomega_B = -T_f\
-k(theta_B-theta_T)+J_Tdotomega_T + bomega_T = T
$$
Here $dotomega = ddottheta$
$endgroup$
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
add a comment |
$begingroup$
Considering the kinetic energy
$$
E = frac 12 J_Bomega_B^2+frac 12 J_Tomega_b^T+frac 12 k(theta_B-theta_T)^2
$$
the motion equations are derived according Euler-Lagrange
$$
frac{partial E}{partial theta}-frac{d}{dt}frac{partial E}{partialomega} = tau
$$
so we have
$$
k(theta_B-theta_T)+J_Bdotomega_B + bomega_B = -T_f\
-k(theta_B-theta_T)+J_Tdotomega_T + bomega_T = T
$$
Here $dotomega = ddottheta$
$endgroup$
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
add a comment |
$begingroup$
Considering the kinetic energy
$$
E = frac 12 J_Bomega_B^2+frac 12 J_Tomega_b^T+frac 12 k(theta_B-theta_T)^2
$$
the motion equations are derived according Euler-Lagrange
$$
frac{partial E}{partial theta}-frac{d}{dt}frac{partial E}{partialomega} = tau
$$
so we have
$$
k(theta_B-theta_T)+J_Bdotomega_B + bomega_B = -T_f\
-k(theta_B-theta_T)+J_Tdotomega_T + bomega_T = T
$$
Here $dotomega = ddottheta$
$endgroup$
Considering the kinetic energy
$$
E = frac 12 J_Bomega_B^2+frac 12 J_Tomega_b^T+frac 12 k(theta_B-theta_T)^2
$$
the motion equations are derived according Euler-Lagrange
$$
frac{partial E}{partial theta}-frac{d}{dt}frac{partial E}{partialomega} = tau
$$
so we have
$$
k(theta_B-theta_T)+J_Bdotomega_B + bomega_B = -T_f\
-k(theta_B-theta_T)+J_Tdotomega_T + bomega_T = T
$$
Here $dotomega = ddottheta$
answered Dec 15 '18 at 10:18
CesareoCesareo
8,5043516
8,5043516
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
add a comment |
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
$begingroup$
This verifies my result. Thank you so much.
$endgroup$
– Squanch
Dec 15 '18 at 10:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3040224%2foil-drills-equation-of-motion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown