Using chain rule to find dz/dt leaving answer in terms of t












1












$begingroup$


Can anyone tell me if I have done this correctly



Using the chain rule Find $ frac{dz}{dt} $
if $ z=xy^2, x=e^{-3t} , y=-sin(2t) $



Leaving answer in terms of $t$





$ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{partial x}{partial t} + frac{partial z}{partial y} cdot frac{partial y}{partial t}$



$ frac{dz}{dt} = (y^2 cdot -3e^{-3t})+(2xy cdot -2cos(2t))$



$ frac{dz}{dt} = (sin^2(2t)cdot-3e^{-3t})+(2e^{-3t}cdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    $endgroup$
    – user137731
    Sep 28 '16 at 1:56












  • $begingroup$
    oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    $endgroup$
    – Buddy
    Sep 28 '16 at 1:59










  • $begingroup$
    Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
    $endgroup$
    – Buddy
    Sep 28 '16 at 2:00


















1












$begingroup$


Can anyone tell me if I have done this correctly



Using the chain rule Find $ frac{dz}{dt} $
if $ z=xy^2, x=e^{-3t} , y=-sin(2t) $



Leaving answer in terms of $t$





$ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{partial x}{partial t} + frac{partial z}{partial y} cdot frac{partial y}{partial t}$



$ frac{dz}{dt} = (y^2 cdot -3e^{-3t})+(2xy cdot -2cos(2t))$



$ frac{dz}{dt} = (sin^2(2t)cdot-3e^{-3t})+(2e^{-3t}cdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    $endgroup$
    – user137731
    Sep 28 '16 at 1:56












  • $begingroup$
    oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    $endgroup$
    – Buddy
    Sep 28 '16 at 1:59










  • $begingroup$
    Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
    $endgroup$
    – Buddy
    Sep 28 '16 at 2:00
















1












1








1





$begingroup$


Can anyone tell me if I have done this correctly



Using the chain rule Find $ frac{dz}{dt} $
if $ z=xy^2, x=e^{-3t} , y=-sin(2t) $



Leaving answer in terms of $t$





$ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{partial x}{partial t} + frac{partial z}{partial y} cdot frac{partial y}{partial t}$



$ frac{dz}{dt} = (y^2 cdot -3e^{-3t})+(2xy cdot -2cos(2t))$



$ frac{dz}{dt} = (sin^2(2t)cdot-3e^{-3t})+(2e^{-3t}cdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance










share|cite|improve this question









$endgroup$




Can anyone tell me if I have done this correctly



Using the chain rule Find $ frac{dz}{dt} $
if $ z=xy^2, x=e^{-3t} , y=-sin(2t) $



Leaving answer in terms of $t$





$ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{partial x}{partial t} + frac{partial z}{partial y} cdot frac{partial y}{partial t}$



$ frac{dz}{dt} = (y^2 cdot -3e^{-3t})+(2xy cdot -2cos(2t))$



$ frac{dz}{dt} = (sin^2(2t)cdot-3e^{-3t})+(2e^{-3t}cdot-sin(2t) cdot-2cos(2t))$



Many thanks in advance







ordinary-differential-equations chain-rule






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 28 '16 at 1:52









BuddyBuddy

4328




4328








  • 1




    $begingroup$
    Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    $endgroup$
    – user137731
    Sep 28 '16 at 1:56












  • $begingroup$
    oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    $endgroup$
    – Buddy
    Sep 28 '16 at 1:59










  • $begingroup$
    Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
    $endgroup$
    – Buddy
    Sep 28 '16 at 2:00
















  • 1




    $begingroup$
    Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
    $endgroup$
    – user137731
    Sep 28 '16 at 1:56












  • $begingroup$
    oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
    $endgroup$
    – Buddy
    Sep 28 '16 at 1:59










  • $begingroup$
    Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
    $endgroup$
    – Buddy
    Sep 28 '16 at 2:00










1




1




$begingroup$
Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
$endgroup$
– user137731
Sep 28 '16 at 1:56






$begingroup$
Looks fine. One little critique: When writing out the chain rule for $frac{dz}{dt}$, you may want to write the derivatives of $x$ and $y$ as total derivatives rather than partial derivatives since each is a function of only $t$.
$endgroup$
– user137731
Sep 28 '16 at 1:56














$begingroup$
oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
$endgroup$
– Buddy
Sep 28 '16 at 1:59




$begingroup$
oh. you are absolutley correct thanks for pointing that out. That was where i was getting confused but was just me not paying attention to detail. You are a champ.
$endgroup$
– Buddy
Sep 28 '16 at 1:59












$begingroup$
Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
$endgroup$
– Buddy
Sep 28 '16 at 2:00






$begingroup$
Correction - should have read $ frac{dz}{dt} =frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt}$
$endgroup$
– Buddy
Sep 28 '16 at 2:00












1 Answer
1






active

oldest

votes


















0












$begingroup$

We need to find:



$$text{z}'(t)=frac{text{d}text{z}(t)}{text{d}t}=frac{text{d}}{text{d}t}left(e^{-3t}cdotleft(-sin(2t)right)^2right)=$$
$$frac{text{d}}{text{d}t}left(e^{-3t}sin^2(2t)right)=e^{-3t}sin(2t)left(4cos(2t)-3sin(2t)right)$$





Using:




  1. The product rule:
    $$frac{text{d}}{text{d}t}left(f(t)cdot y(t)right)=f(t)cdotfrac{text{d}}{text{d}t}left(y(t)right)+y(t)cdotfrac{text{d}}{text{d}t}left(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

  2. $$frac{text{d}}{text{d}t}left(e^{x(t)}right)=e^{x(t)}cdotfrac{text{d}}{text{d}t}left(x(t)right)=x'(t)cdot e^{x(t)}$$

  3. When $text{C}$ is a constant:
    $$frac{text{d}}{text{d}t}left(text{C}cdot q(t)right)=text{C}cdotfrac{text{d}}{text{d}t}left(q(t)right)=text{C}cdot q'(t)$$

  4. When $text{n}$ is a constant, using the chain rule:
    $$frac{text{d}}{text{d}t}left(w(t)^text{n}right)=text{n}cdot w(t)^{text{n}-1}cdotfrac{text{d}}{text{d}t}left(w(t)right)=text{n}cdot w(t)^{text{n}-1}cdot w'(t)$$

  5. When $text{m}$ is a constant, using the chain rule:
    $$frac{text{d}}{text{d}t}left(v(text{m}t)right)=frac{text{d}}{text{d}t}left(text{m}tright)cdot v'(text{m}t)=text{m}cdot v'(text{m}t)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1944393%2fusing-chain-rule-to-find-dz-dt-leaving-answer-in-terms-of-t%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    We need to find:



    $$text{z}'(t)=frac{text{d}text{z}(t)}{text{d}t}=frac{text{d}}{text{d}t}left(e^{-3t}cdotleft(-sin(2t)right)^2right)=$$
    $$frac{text{d}}{text{d}t}left(e^{-3t}sin^2(2t)right)=e^{-3t}sin(2t)left(4cos(2t)-3sin(2t)right)$$





    Using:




    1. The product rule:
      $$frac{text{d}}{text{d}t}left(f(t)cdot y(t)right)=f(t)cdotfrac{text{d}}{text{d}t}left(y(t)right)+y(t)cdotfrac{text{d}}{text{d}t}left(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

    2. $$frac{text{d}}{text{d}t}left(e^{x(t)}right)=e^{x(t)}cdotfrac{text{d}}{text{d}t}left(x(t)right)=x'(t)cdot e^{x(t)}$$

    3. When $text{C}$ is a constant:
      $$frac{text{d}}{text{d}t}left(text{C}cdot q(t)right)=text{C}cdotfrac{text{d}}{text{d}t}left(q(t)right)=text{C}cdot q'(t)$$

    4. When $text{n}$ is a constant, using the chain rule:
      $$frac{text{d}}{text{d}t}left(w(t)^text{n}right)=text{n}cdot w(t)^{text{n}-1}cdotfrac{text{d}}{text{d}t}left(w(t)right)=text{n}cdot w(t)^{text{n}-1}cdot w'(t)$$

    5. When $text{m}$ is a constant, using the chain rule:
      $$frac{text{d}}{text{d}t}left(v(text{m}t)right)=frac{text{d}}{text{d}t}left(text{m}tright)cdot v'(text{m}t)=text{m}cdot v'(text{m}t)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      We need to find:



      $$text{z}'(t)=frac{text{d}text{z}(t)}{text{d}t}=frac{text{d}}{text{d}t}left(e^{-3t}cdotleft(-sin(2t)right)^2right)=$$
      $$frac{text{d}}{text{d}t}left(e^{-3t}sin^2(2t)right)=e^{-3t}sin(2t)left(4cos(2t)-3sin(2t)right)$$





      Using:




      1. The product rule:
        $$frac{text{d}}{text{d}t}left(f(t)cdot y(t)right)=f(t)cdotfrac{text{d}}{text{d}t}left(y(t)right)+y(t)cdotfrac{text{d}}{text{d}t}left(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

      2. $$frac{text{d}}{text{d}t}left(e^{x(t)}right)=e^{x(t)}cdotfrac{text{d}}{text{d}t}left(x(t)right)=x'(t)cdot e^{x(t)}$$

      3. When $text{C}$ is a constant:
        $$frac{text{d}}{text{d}t}left(text{C}cdot q(t)right)=text{C}cdotfrac{text{d}}{text{d}t}left(q(t)right)=text{C}cdot q'(t)$$

      4. When $text{n}$ is a constant, using the chain rule:
        $$frac{text{d}}{text{d}t}left(w(t)^text{n}right)=text{n}cdot w(t)^{text{n}-1}cdotfrac{text{d}}{text{d}t}left(w(t)right)=text{n}cdot w(t)^{text{n}-1}cdot w'(t)$$

      5. When $text{m}$ is a constant, using the chain rule:
        $$frac{text{d}}{text{d}t}left(v(text{m}t)right)=frac{text{d}}{text{d}t}left(text{m}tright)cdot v'(text{m}t)=text{m}cdot v'(text{m}t)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        We need to find:



        $$text{z}'(t)=frac{text{d}text{z}(t)}{text{d}t}=frac{text{d}}{text{d}t}left(e^{-3t}cdotleft(-sin(2t)right)^2right)=$$
        $$frac{text{d}}{text{d}t}left(e^{-3t}sin^2(2t)right)=e^{-3t}sin(2t)left(4cos(2t)-3sin(2t)right)$$





        Using:




        1. The product rule:
          $$frac{text{d}}{text{d}t}left(f(t)cdot y(t)right)=f(t)cdotfrac{text{d}}{text{d}t}left(y(t)right)+y(t)cdotfrac{text{d}}{text{d}t}left(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

        2. $$frac{text{d}}{text{d}t}left(e^{x(t)}right)=e^{x(t)}cdotfrac{text{d}}{text{d}t}left(x(t)right)=x'(t)cdot e^{x(t)}$$

        3. When $text{C}$ is a constant:
          $$frac{text{d}}{text{d}t}left(text{C}cdot q(t)right)=text{C}cdotfrac{text{d}}{text{d}t}left(q(t)right)=text{C}cdot q'(t)$$

        4. When $text{n}$ is a constant, using the chain rule:
          $$frac{text{d}}{text{d}t}left(w(t)^text{n}right)=text{n}cdot w(t)^{text{n}-1}cdotfrac{text{d}}{text{d}t}left(w(t)right)=text{n}cdot w(t)^{text{n}-1}cdot w'(t)$$

        5. When $text{m}$ is a constant, using the chain rule:
          $$frac{text{d}}{text{d}t}left(v(text{m}t)right)=frac{text{d}}{text{d}t}left(text{m}tright)cdot v'(text{m}t)=text{m}cdot v'(text{m}t)$$






        share|cite|improve this answer









        $endgroup$



        We need to find:



        $$text{z}'(t)=frac{text{d}text{z}(t)}{text{d}t}=frac{text{d}}{text{d}t}left(e^{-3t}cdotleft(-sin(2t)right)^2right)=$$
        $$frac{text{d}}{text{d}t}left(e^{-3t}sin^2(2t)right)=e^{-3t}sin(2t)left(4cos(2t)-3sin(2t)right)$$





        Using:




        1. The product rule:
          $$frac{text{d}}{text{d}t}left(f(t)cdot y(t)right)=f(t)cdotfrac{text{d}}{text{d}t}left(y(t)right)+y(t)cdotfrac{text{d}}{text{d}t}left(f(t)right)=y(t)cdot f'(t)+f(t)cdot y'(t)$$

        2. $$frac{text{d}}{text{d}t}left(e^{x(t)}right)=e^{x(t)}cdotfrac{text{d}}{text{d}t}left(x(t)right)=x'(t)cdot e^{x(t)}$$

        3. When $text{C}$ is a constant:
          $$frac{text{d}}{text{d}t}left(text{C}cdot q(t)right)=text{C}cdotfrac{text{d}}{text{d}t}left(q(t)right)=text{C}cdot q'(t)$$

        4. When $text{n}$ is a constant, using the chain rule:
          $$frac{text{d}}{text{d}t}left(w(t)^text{n}right)=text{n}cdot w(t)^{text{n}-1}cdotfrac{text{d}}{text{d}t}left(w(t)right)=text{n}cdot w(t)^{text{n}-1}cdot w'(t)$$

        5. When $text{m}$ is a constant, using the chain rule:
          $$frac{text{d}}{text{d}t}left(v(text{m}t)right)=frac{text{d}}{text{d}t}left(text{m}tright)cdot v'(text{m}t)=text{m}cdot v'(text{m}t)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 28 '16 at 19:54









        JanJan

        21.7k31240




        21.7k31240






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1944393%2fusing-chain-rule-to-find-dz-dt-leaving-answer-in-terms-of-t%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna