Suggestion for a functional equation $f'left(frac{a}{x}right)=frac{x}{f(x)}$ where $f:(0,infty)to(0,infty)$...












1












$begingroup$



This question already has an answer here:




  • Functional Identity

    1 answer




I want to solve the following functional equation:




Find all differentiable functions $f : (0,infty) rightarrow (0,infty)$ for which there is a positive real number $a$ such that $$f'left(frac{a}{x}right)=frac{x}{f(x)}$$ for all $x > 0$.




I have noted that the function $f$ is increasing but i cannot go any further
Any suggestions?










share|cite|improve this question











$endgroup$



marked as duplicate by LutzL differential-equations
Users with the  differential-equations badge can single-handedly close differential-equations questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 17 '18 at 23:31


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.




















    1












    $begingroup$



    This question already has an answer here:




    • Functional Identity

      1 answer




    I want to solve the following functional equation:




    Find all differentiable functions $f : (0,infty) rightarrow (0,infty)$ for which there is a positive real number $a$ such that $$f'left(frac{a}{x}right)=frac{x}{f(x)}$$ for all $x > 0$.




    I have noted that the function $f$ is increasing but i cannot go any further
    Any suggestions?










    share|cite|improve this question











    $endgroup$



    marked as duplicate by LutzL differential-equations
    Users with the  differential-equations badge can single-handedly close differential-equations questions as duplicates and reopen them as needed.

    StackExchange.ready(function() {
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function() {
    $hover.showInfoMessage('', {
    messageElement: $msg.clone().show(),
    transient: false,
    position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
    dismissable: false,
    relativeToBody: true
    });
    },
    function() {
    StackExchange.helpers.removeMessages();
    }
    );
    });
    });
    Dec 17 '18 at 23:31


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















      1












      1








      1





      $begingroup$



      This question already has an answer here:




      • Functional Identity

        1 answer




      I want to solve the following functional equation:




      Find all differentiable functions $f : (0,infty) rightarrow (0,infty)$ for which there is a positive real number $a$ such that $$f'left(frac{a}{x}right)=frac{x}{f(x)}$$ for all $x > 0$.




      I have noted that the function $f$ is increasing but i cannot go any further
      Any suggestions?










      share|cite|improve this question











      $endgroup$





      This question already has an answer here:




      • Functional Identity

        1 answer




      I want to solve the following functional equation:




      Find all differentiable functions $f : (0,infty) rightarrow (0,infty)$ for which there is a positive real number $a$ such that $$f'left(frac{a}{x}right)=frac{x}{f(x)}$$ for all $x > 0$.




      I have noted that the function $f$ is increasing but i cannot go any further
      Any suggestions?





      This question already has an answer here:




      • Functional Identity

        1 answer








      real-analysis ordinary-differential-equations analysis derivatives functional-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 17 '18 at 23:18







      user593746

















      asked Dec 17 '18 at 19:53









      giovanni gajacgiovanni gajac

      133




      133




      marked as duplicate by LutzL differential-equations
      Users with the  differential-equations badge can single-handedly close differential-equations questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Dec 17 '18 at 23:31


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by LutzL differential-equations
      Users with the  differential-equations badge can single-handedly close differential-equations questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Dec 17 '18 at 23:31


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          We have
          $$f(x)=frac{x}{f'(a/x)}.$$
          Taking derivative wrt $x$, we get
          $$f'(x)=frac{1}{f'(a/x)}-frac{x}{big(f'(a/x)big)^2}Biggl(-frac{a}{x^2}f''left(frac{a}{x}right)Biggr).tag{1}$$
          Plugging in $a/x$ for $x$ in the original functional equation, we get
          $$f'(x)=frac{a/x}{f(a/x)}.tag{2}$$
          From (1) and (2), we have
          $$frac{x}{f(x)}=frac{1}{f'(x)}+frac{xf''(x)}{big(f'(x)big)^2}$$
          for all $x>0$. This shows that
          $$xbig(f'(x)big)^2=f(x)f'(x)+xf(x)f''(x).$$
          So, we have
          $$frac{d}{dx}left(frac{f(x)}{f'(x)}right)=frac{big(f'(x)big)^2-f(x)f''(x)}{big(f'(x)big)^2}=frac{f(x)}{xf'(x)}.tag{3}$$
          Let $g(x)=frac{f(x)}{f'(x)}$. Then, (3) is equivalent to
          $$frac{d}{dx}frac{g(x)}{x}=0.$$
          That is, $g(x)=cx$ for some constant $c$. So $g(x)=cx$, so $frac{f(x)}{f'(x)}=cx$, so
          $$f'(x)=frac{1}{cx}f(x).$$
          This implies
          $$frac{d}{dx}frac{f(x)}{x^{1/c}}=0.$$
          That is, $f(x)=bx^{1/c}$ for some constant $b$.



          Now, $f'left(xright)=frac{b}{c}x^{frac{1-c}{c}}$, so
          $$frac{x}{bx^{1/c}}=frac{x}{f(x)}=f'left(frac{a}{x}right)=frac{b}{c}left(frac{a}{x}right)^{frac{1-c}{c}}=frac{x}{frac{a^{frac{c-1}{c}}c}{b}x^{1/c}}.$$
          Therefore,
          $$b=frac{a^{frac{c-1}{c}}c}{b}.$$
          This yields
          $$b=a^{frac{c-1}{2c}}c^{frac12}.$$
          So all solutions are
          $$f(x)=a^{frac{c-1}{2c}}c^{frac12}x^{frac1c}$$
          for some $c>0$. If we write $beta=frac1c$, we get a simpler form:
          $$f(x)=sqrt{frac{a^{1-beta}}{beta}}x^{beta}.$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            It seems that $f approx x^beta $ might work.






            share|cite|improve this answer









            $endgroup$




















              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              We have
              $$f(x)=frac{x}{f'(a/x)}.$$
              Taking derivative wrt $x$, we get
              $$f'(x)=frac{1}{f'(a/x)}-frac{x}{big(f'(a/x)big)^2}Biggl(-frac{a}{x^2}f''left(frac{a}{x}right)Biggr).tag{1}$$
              Plugging in $a/x$ for $x$ in the original functional equation, we get
              $$f'(x)=frac{a/x}{f(a/x)}.tag{2}$$
              From (1) and (2), we have
              $$frac{x}{f(x)}=frac{1}{f'(x)}+frac{xf''(x)}{big(f'(x)big)^2}$$
              for all $x>0$. This shows that
              $$xbig(f'(x)big)^2=f(x)f'(x)+xf(x)f''(x).$$
              So, we have
              $$frac{d}{dx}left(frac{f(x)}{f'(x)}right)=frac{big(f'(x)big)^2-f(x)f''(x)}{big(f'(x)big)^2}=frac{f(x)}{xf'(x)}.tag{3}$$
              Let $g(x)=frac{f(x)}{f'(x)}$. Then, (3) is equivalent to
              $$frac{d}{dx}frac{g(x)}{x}=0.$$
              That is, $g(x)=cx$ for some constant $c$. So $g(x)=cx$, so $frac{f(x)}{f'(x)}=cx$, so
              $$f'(x)=frac{1}{cx}f(x).$$
              This implies
              $$frac{d}{dx}frac{f(x)}{x^{1/c}}=0.$$
              That is, $f(x)=bx^{1/c}$ for some constant $b$.



              Now, $f'left(xright)=frac{b}{c}x^{frac{1-c}{c}}$, so
              $$frac{x}{bx^{1/c}}=frac{x}{f(x)}=f'left(frac{a}{x}right)=frac{b}{c}left(frac{a}{x}right)^{frac{1-c}{c}}=frac{x}{frac{a^{frac{c-1}{c}}c}{b}x^{1/c}}.$$
              Therefore,
              $$b=frac{a^{frac{c-1}{c}}c}{b}.$$
              This yields
              $$b=a^{frac{c-1}{2c}}c^{frac12}.$$
              So all solutions are
              $$f(x)=a^{frac{c-1}{2c}}c^{frac12}x^{frac1c}$$
              for some $c>0$. If we write $beta=frac1c$, we get a simpler form:
              $$f(x)=sqrt{frac{a^{1-beta}}{beta}}x^{beta}.$$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                We have
                $$f(x)=frac{x}{f'(a/x)}.$$
                Taking derivative wrt $x$, we get
                $$f'(x)=frac{1}{f'(a/x)}-frac{x}{big(f'(a/x)big)^2}Biggl(-frac{a}{x^2}f''left(frac{a}{x}right)Biggr).tag{1}$$
                Plugging in $a/x$ for $x$ in the original functional equation, we get
                $$f'(x)=frac{a/x}{f(a/x)}.tag{2}$$
                From (1) and (2), we have
                $$frac{x}{f(x)}=frac{1}{f'(x)}+frac{xf''(x)}{big(f'(x)big)^2}$$
                for all $x>0$. This shows that
                $$xbig(f'(x)big)^2=f(x)f'(x)+xf(x)f''(x).$$
                So, we have
                $$frac{d}{dx}left(frac{f(x)}{f'(x)}right)=frac{big(f'(x)big)^2-f(x)f''(x)}{big(f'(x)big)^2}=frac{f(x)}{xf'(x)}.tag{3}$$
                Let $g(x)=frac{f(x)}{f'(x)}$. Then, (3) is equivalent to
                $$frac{d}{dx}frac{g(x)}{x}=0.$$
                That is, $g(x)=cx$ for some constant $c$. So $g(x)=cx$, so $frac{f(x)}{f'(x)}=cx$, so
                $$f'(x)=frac{1}{cx}f(x).$$
                This implies
                $$frac{d}{dx}frac{f(x)}{x^{1/c}}=0.$$
                That is, $f(x)=bx^{1/c}$ for some constant $b$.



                Now, $f'left(xright)=frac{b}{c}x^{frac{1-c}{c}}$, so
                $$frac{x}{bx^{1/c}}=frac{x}{f(x)}=f'left(frac{a}{x}right)=frac{b}{c}left(frac{a}{x}right)^{frac{1-c}{c}}=frac{x}{frac{a^{frac{c-1}{c}}c}{b}x^{1/c}}.$$
                Therefore,
                $$b=frac{a^{frac{c-1}{c}}c}{b}.$$
                This yields
                $$b=a^{frac{c-1}{2c}}c^{frac12}.$$
                So all solutions are
                $$f(x)=a^{frac{c-1}{2c}}c^{frac12}x^{frac1c}$$
                for some $c>0$. If we write $beta=frac1c$, we get a simpler form:
                $$f(x)=sqrt{frac{a^{1-beta}}{beta}}x^{beta}.$$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  We have
                  $$f(x)=frac{x}{f'(a/x)}.$$
                  Taking derivative wrt $x$, we get
                  $$f'(x)=frac{1}{f'(a/x)}-frac{x}{big(f'(a/x)big)^2}Biggl(-frac{a}{x^2}f''left(frac{a}{x}right)Biggr).tag{1}$$
                  Plugging in $a/x$ for $x$ in the original functional equation, we get
                  $$f'(x)=frac{a/x}{f(a/x)}.tag{2}$$
                  From (1) and (2), we have
                  $$frac{x}{f(x)}=frac{1}{f'(x)}+frac{xf''(x)}{big(f'(x)big)^2}$$
                  for all $x>0$. This shows that
                  $$xbig(f'(x)big)^2=f(x)f'(x)+xf(x)f''(x).$$
                  So, we have
                  $$frac{d}{dx}left(frac{f(x)}{f'(x)}right)=frac{big(f'(x)big)^2-f(x)f''(x)}{big(f'(x)big)^2}=frac{f(x)}{xf'(x)}.tag{3}$$
                  Let $g(x)=frac{f(x)}{f'(x)}$. Then, (3) is equivalent to
                  $$frac{d}{dx}frac{g(x)}{x}=0.$$
                  That is, $g(x)=cx$ for some constant $c$. So $g(x)=cx$, so $frac{f(x)}{f'(x)}=cx$, so
                  $$f'(x)=frac{1}{cx}f(x).$$
                  This implies
                  $$frac{d}{dx}frac{f(x)}{x^{1/c}}=0.$$
                  That is, $f(x)=bx^{1/c}$ for some constant $b$.



                  Now, $f'left(xright)=frac{b}{c}x^{frac{1-c}{c}}$, so
                  $$frac{x}{bx^{1/c}}=frac{x}{f(x)}=f'left(frac{a}{x}right)=frac{b}{c}left(frac{a}{x}right)^{frac{1-c}{c}}=frac{x}{frac{a^{frac{c-1}{c}}c}{b}x^{1/c}}.$$
                  Therefore,
                  $$b=frac{a^{frac{c-1}{c}}c}{b}.$$
                  This yields
                  $$b=a^{frac{c-1}{2c}}c^{frac12}.$$
                  So all solutions are
                  $$f(x)=a^{frac{c-1}{2c}}c^{frac12}x^{frac1c}$$
                  for some $c>0$. If we write $beta=frac1c$, we get a simpler form:
                  $$f(x)=sqrt{frac{a^{1-beta}}{beta}}x^{beta}.$$






                  share|cite|improve this answer











                  $endgroup$



                  We have
                  $$f(x)=frac{x}{f'(a/x)}.$$
                  Taking derivative wrt $x$, we get
                  $$f'(x)=frac{1}{f'(a/x)}-frac{x}{big(f'(a/x)big)^2}Biggl(-frac{a}{x^2}f''left(frac{a}{x}right)Biggr).tag{1}$$
                  Plugging in $a/x$ for $x$ in the original functional equation, we get
                  $$f'(x)=frac{a/x}{f(a/x)}.tag{2}$$
                  From (1) and (2), we have
                  $$frac{x}{f(x)}=frac{1}{f'(x)}+frac{xf''(x)}{big(f'(x)big)^2}$$
                  for all $x>0$. This shows that
                  $$xbig(f'(x)big)^2=f(x)f'(x)+xf(x)f''(x).$$
                  So, we have
                  $$frac{d}{dx}left(frac{f(x)}{f'(x)}right)=frac{big(f'(x)big)^2-f(x)f''(x)}{big(f'(x)big)^2}=frac{f(x)}{xf'(x)}.tag{3}$$
                  Let $g(x)=frac{f(x)}{f'(x)}$. Then, (3) is equivalent to
                  $$frac{d}{dx}frac{g(x)}{x}=0.$$
                  That is, $g(x)=cx$ for some constant $c$. So $g(x)=cx$, so $frac{f(x)}{f'(x)}=cx$, so
                  $$f'(x)=frac{1}{cx}f(x).$$
                  This implies
                  $$frac{d}{dx}frac{f(x)}{x^{1/c}}=0.$$
                  That is, $f(x)=bx^{1/c}$ for some constant $b$.



                  Now, $f'left(xright)=frac{b}{c}x^{frac{1-c}{c}}$, so
                  $$frac{x}{bx^{1/c}}=frac{x}{f(x)}=f'left(frac{a}{x}right)=frac{b}{c}left(frac{a}{x}right)^{frac{1-c}{c}}=frac{x}{frac{a^{frac{c-1}{c}}c}{b}x^{1/c}}.$$
                  Therefore,
                  $$b=frac{a^{frac{c-1}{c}}c}{b}.$$
                  This yields
                  $$b=a^{frac{c-1}{2c}}c^{frac12}.$$
                  So all solutions are
                  $$f(x)=a^{frac{c-1}{2c}}c^{frac12}x^{frac1c}$$
                  for some $c>0$. If we write $beta=frac1c$, we get a simpler form:
                  $$f(x)=sqrt{frac{a^{1-beta}}{beta}}x^{beta}.$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 17 '18 at 23:17

























                  answered Dec 17 '18 at 21:59







                  user593746






























                      1












                      $begingroup$

                      It seems that $f approx x^beta $ might work.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        It seems that $f approx x^beta $ might work.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          It seems that $f approx x^beta $ might work.






                          share|cite|improve this answer









                          $endgroup$



                          It seems that $f approx x^beta $ might work.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 17 '18 at 20:29









                          user619894user619894

                          111




                          111















                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna