Normal Distribution - variance of minimal MSE (mean squared error)












1












$begingroup$


We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}

We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}

but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
    $endgroup$
    – Foobaz John
    Dec 17 '18 at 19:16










  • $begingroup$
    True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
    $endgroup$
    – F. Moe
    Dec 17 '18 at 19:39








  • 1




    $begingroup$
    Related: math.stackexchange.com/questions/2860289/….
    $endgroup$
    – StubbornAtom
    Dec 17 '18 at 19:54
















1












$begingroup$


We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}

We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}

but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
    $endgroup$
    – Foobaz John
    Dec 17 '18 at 19:16










  • $begingroup$
    True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
    $endgroup$
    – F. Moe
    Dec 17 '18 at 19:39








  • 1




    $begingroup$
    Related: math.stackexchange.com/questions/2860289/….
    $endgroup$
    – StubbornAtom
    Dec 17 '18 at 19:54














1












1








1





$begingroup$


We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}

We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}

but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.










share|cite|improve this question











$endgroup$




We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}

We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}

but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.







probability-theory statistics optimization random-variables normal-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 19:54







user593746

















asked Dec 17 '18 at 19:04









F. MoeF. Moe

205




205








  • 1




    $begingroup$
    You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
    $endgroup$
    – Foobaz John
    Dec 17 '18 at 19:16










  • $begingroup$
    True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
    $endgroup$
    – F. Moe
    Dec 17 '18 at 19:39








  • 1




    $begingroup$
    Related: math.stackexchange.com/questions/2860289/….
    $endgroup$
    – StubbornAtom
    Dec 17 '18 at 19:54














  • 1




    $begingroup$
    You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
    $endgroup$
    – Foobaz John
    Dec 17 '18 at 19:16










  • $begingroup$
    True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
    $endgroup$
    – F. Moe
    Dec 17 '18 at 19:39








  • 1




    $begingroup$
    Related: math.stackexchange.com/questions/2860289/….
    $endgroup$
    – StubbornAtom
    Dec 17 '18 at 19:54








1




1




$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16




$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16












$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39






$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39






1




1




$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54




$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044313%2fnormal-distribution-variance-of-minimal-mse-mean-squared-error%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044313%2fnormal-distribution-variance-of-minimal-mse-mean-squared-error%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna