Normal Distribution - variance of minimal MSE (mean squared error)
$begingroup$
We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}
We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}
but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.
probability-theory statistics optimization random-variables normal-distribution
$endgroup$
add a comment |
$begingroup$
We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}
We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}
but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.
probability-theory statistics optimization random-variables normal-distribution
$endgroup$
1
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
1
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54
add a comment |
$begingroup$
We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}
We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}
but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.
probability-theory statistics optimization random-variables normal-distribution
$endgroup$
We are given $n$ normally distributed random variables $X_1,ldots, X_n$ with mean $mu$ and variance $sigma^2$. We have
begin{align}
S^2 = C sum_{i=1}^n (x_i - bar{x})^2
end{align}
We want to find $C$, such that the variance has minimal MSE. Now, I already have that,
begin{align}
E(S^2)=C , (n-1) ,sigma ^2,
end{align}
but I don't see how I would calculate $operatorname{var}(S^2)$ to find the $operatorname{MSE}(S^2)$ (and minimize it with respect to $C$). Thank you in advance.
probability-theory statistics optimization random-variables normal-distribution
probability-theory statistics optimization random-variables normal-distribution
edited Dec 17 '18 at 19:54
user593746
asked Dec 17 '18 at 19:04
F. MoeF. Moe
205
205
1
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
1
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54
add a comment |
1
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
1
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54
1
1
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
1
1
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044313%2fnormal-distribution-variance-of-minimal-mse-mean-squared-error%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044313%2fnormal-distribution-variance-of-minimal-mse-mean-squared-error%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can use the fact that $S^2/Csigma^2sim chi^2_{(n-1)}$ to compute the variance of $S^2$.
$endgroup$
– Foobaz John
Dec 17 '18 at 19:16
$begingroup$
True. So I get for the variance var$(S^2)=2 , C^2, sigma ^2 , (n-1)$ and therefore for the MSE to be minimal $C$ should be $C=(n+1)^{-1}$. Thank you for the hint!
$endgroup$
– F. Moe
Dec 17 '18 at 19:39
1
$begingroup$
Related: math.stackexchange.com/questions/2860289/….
$endgroup$
– StubbornAtom
Dec 17 '18 at 19:54