Derivative of metric along curve












2












$begingroup$


Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
$$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
(Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).



I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
$$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
but
$$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$



I do not see how these two expressions are equal.



Is there something wrong? Is there something I am missing?



Thanks!










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
    $$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
    (Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).



    I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
    $$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
    but
    $$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$



    I do not see how these two expressions are equal.



    Is there something wrong? Is there something I am missing?



    Thanks!










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
      $$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
      (Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).



      I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
      $$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
      but
      $$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$



      I do not see how these two expressions are equal.



      Is there something wrong? Is there something I am missing?



      Thanks!










      share|cite|improve this question









      $endgroup$




      Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
      $$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
      (Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).



      I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
      $$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
      but
      $$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$



      I do not see how these two expressions are equal.



      Is there something wrong? Is there something I am missing?



      Thanks!







      differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 2:08









      Quim LlorensQuim Llorens

      132




      132






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as



          $$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$



          Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,



          $$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Lovely, thank you!!!! :)
            $endgroup$
            – Quim Llorens
            Jan 7 at 12:38











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064590%2fderivative-of-metric-along-curve%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as



          $$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$



          Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,



          $$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Lovely, thank you!!!! :)
            $endgroup$
            – Quim Llorens
            Jan 7 at 12:38
















          0












          $begingroup$

          From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as



          $$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$



          Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,



          $$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Lovely, thank you!!!! :)
            $endgroup$
            – Quim Llorens
            Jan 7 at 12:38














          0












          0








          0





          $begingroup$

          From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as



          $$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$



          Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,



          $$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.






          share|cite|improve this answer









          $endgroup$



          From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as



          $$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$



          Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,



          $$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 7 at 7:24









          kobekobe

          35k22248




          35k22248












          • $begingroup$
            Lovely, thank you!!!! :)
            $endgroup$
            – Quim Llorens
            Jan 7 at 12:38


















          • $begingroup$
            Lovely, thank you!!!! :)
            $endgroup$
            – Quim Llorens
            Jan 7 at 12:38
















          $begingroup$
          Lovely, thank you!!!! :)
          $endgroup$
          – Quim Llorens
          Jan 7 at 12:38




          $begingroup$
          Lovely, thank you!!!! :)
          $endgroup$
          – Quim Llorens
          Jan 7 at 12:38


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064590%2fderivative-of-metric-along-curve%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna