Derivative of metric along curve
$begingroup$
Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
$$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
(Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).
I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
$$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
but
$$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$
I do not see how these two expressions are equal.
Is there something wrong? Is there something I am missing?
Thanks!
differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry
$endgroup$
add a comment |
$begingroup$
Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
$$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
(Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).
I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
$$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
but
$$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$
I do not see how these two expressions are equal.
Is there something wrong? Is there something I am missing?
Thanks!
differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry
$endgroup$
add a comment |
$begingroup$
Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
$$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
(Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).
I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
$$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
but
$$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$
I do not see how these two expressions are equal.
Is there something wrong? Is there something I am missing?
Thanks!
differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry
$endgroup$
Let $(M,g)$ be a semi-Riemannian manifold with Levi-Civita connection $D$. Let $alpha : [a,b] rightarrow M$ be a smooth curve on $M$, and let $frac{D}{dt}$ be the induced covariant derivative on $alpha$. I want to prove that for all $X,Y$ smooth vector fields on $alpha$,
$$frac{d}{dt}big{(}g(X,Y)big{)} = g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) $$
(Proposition 3.18(4) from O'Neill's Semi-Riemannian Geometry).
I've tried using substituting coordinates (for a chart with coordinate functions $x^1,...,x^n$), which is what the book suggests: $g(X,Y) = g_{ij}X^iY^j$, and $frac{D}{dt}X = left( frac{dX^i}{dt} + Gamma^i_{jk}frac{d(x^jcircalpha)}{dt}X^kright)partial_i$. But I am stuck:
$$frac{d}{dt}big{(}g(X,Y)big{)} = frac{dg_{ij}}{dt}X^iY^j + g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt}$$
but
$$ g(frac{D}{dt}X,Y) + g(X,frac{D}{dt}Y) = g_{ij}frac{dX^i}{dt}Y^j + g_{ij}X^ifrac{dY^j}{dt} + g_{ij}(Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^lY^j + Gamma^i_{kl}frac{d(x^kcircalpha)}{dt}X^jY^l) $$
I do not see how these two expressions are equal.
Is there something wrong? Is there something I am missing?
Thanks!
differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry
differential-geometry riemannian-geometry general-relativity semi-riemannian-geometry
asked Jan 7 at 2:08
Quim LlorensQuim Llorens
132
132
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as
$$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$
Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,
$$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.
$endgroup$
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064590%2fderivative-of-metric-along-curve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as
$$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$
Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,
$$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.
$endgroup$
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
add a comment |
$begingroup$
From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as
$$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$
Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,
$$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.
$endgroup$
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
add a comment |
$begingroup$
From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as
$$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$
Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,
$$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.
$endgroup$
From the last equation, let's manipulate the last group of terms on the right-hand side. We can rewrite it as
$$g_{ij}Gamma^{i}_{kl}dot{x}^k X^l Y^j + g_{il}Gamma^{i}_{kj}dot{x}^k X^lY^j = (g_{ij}Gamma^i_{kl} + g_{il}Gamma^i_{kj})dot{x}^kX^lY^j$$
Since $g_{ij}Gamma^{i}_{kl} = dfrac{1}{2}(partial_k g_{lj} + partial_l g_{jk} - partial_j g_{kl})$ and $g_{il}Gamma^{i}_{kj} = dfrac{1}{2}(partial_k g_{jl} + partial_j g_{lk} - partial_l g_{kj})$, then $g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj} = partial_k g_{lj}$. By the chain rule, $partial_k g_{lj}, dot{x}^k = dfrac{dg_{lj}}{dt}$. Hence,
$$(g_{ij}Gamma^{i}_{kl} + g_{il}Gamma^{i}_{kj})dot{x}^k X^l Y^j = frac{d g_{lj}}{dt}X^l Y^j = frac{d g_{ij}}{dt} X^i Y^j$$ as was needed.
answered Jan 7 at 7:24
kobekobe
35k22248
35k22248
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
add a comment |
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
$begingroup$
Lovely, thank you!!!! :)
$endgroup$
– Quim Llorens
Jan 7 at 12:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064590%2fderivative-of-metric-along-curve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown