Determinant of this $N$ x $N$ matrix












0












$begingroup$


Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
Now consider the polynomial:($a=tau^2-2)$
$$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$



Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
(c_{1} & c_{2} ... &c_{N})
end{matrix}$



I want to calculate the NxN determinant of A:



$$ begin{matrix}
a & 1 & 0 & 0 .....&0 \
1 & a & 1 & 0.......&0 \
0 & 1 & a &1....... &0 \
0 & 0 & 1 &a.....\
.\
.\
0.\
end{matrix}
$$

So we have repeating blocks of $begin{matrix}
a & 1\
1 & a\
end{matrix}$
until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
-a & -1\
-1 & -a\
end{matrix}$
from the $(nu+1)^{th}$ row and a block $begin{matrix}
a & i\
i & -a\
end{matrix}$
in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
    Now consider the polynomial:($a=tau^2-2)$
    $$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$



    Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
    (c_{1} & c_{2} ... &c_{N})
    end{matrix}$



    I want to calculate the NxN determinant of A:



    $$ begin{matrix}
    a & 1 & 0 & 0 .....&0 \
    1 & a & 1 & 0.......&0 \
    0 & 1 & a &1....... &0 \
    0 & 0 & 1 &a.....\
    .\
    .\
    0.\
    end{matrix}
    $$

    So we have repeating blocks of $begin{matrix}
    a & 1\
    1 & a\
    end{matrix}$
    until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
    -a & -1\
    -1 & -a\
    end{matrix}$
    from the $(nu+1)^{th}$ row and a block $begin{matrix}
    a & i\
    i & -a\
    end{matrix}$
    in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
      Now consider the polynomial:($a=tau^2-2)$
      $$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$



      Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
      (c_{1} & c_{2} ... &c_{N})
      end{matrix}$



      I want to calculate the NxN determinant of A:



      $$ begin{matrix}
      a & 1 & 0 & 0 .....&0 \
      1 & a & 1 & 0.......&0 \
      0 & 1 & a &1....... &0 \
      0 & 0 & 1 &a.....\
      .\
      .\
      0.\
      end{matrix}
      $$

      So we have repeating blocks of $begin{matrix}
      a & 1\
      1 & a\
      end{matrix}$
      until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
      -a & -1\
      -1 & -a\
      end{matrix}$
      from the $(nu+1)^{th}$ row and a block $begin{matrix}
      a & i\
      i & -a\
      end{matrix}$
      in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$










      share|cite|improve this question











      $endgroup$




      Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
      Now consider the polynomial:($a=tau^2-2)$
      $$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$



      Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
      (c_{1} & c_{2} ... &c_{N})
      end{matrix}$



      I want to calculate the NxN determinant of A:



      $$ begin{matrix}
      a & 1 & 0 & 0 .....&0 \
      1 & a & 1 & 0.......&0 \
      0 & 1 & a &1....... &0 \
      0 & 0 & 1 &a.....\
      .\
      .\
      0.\
      end{matrix}
      $$

      So we have repeating blocks of $begin{matrix}
      a & 1\
      1 & a\
      end{matrix}$
      until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
      -a & -1\
      -1 & -a\
      end{matrix}$
      from the $(nu+1)^{th}$ row and a block $begin{matrix}
      a & i\
      i & -a\
      end{matrix}$
      in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$







      determinant






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 7 at 3:21









      Gnumbertester

      670114




      670114










      asked Jan 7 at 2:16









      Mani JhaMani Jha

      94




      94






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $$D_n=begin{vmatrix}
          a & 1 & 0 & cdots & 0 & 0 & 0\
          1 & a & 1 & cdots & 0 & 0 & 0\
          0 & 1 & a & cdots & 0 & 0 & 0\
          cdots & cdots & cdots & cdots &cdots & cdots & cdots\
          0 & 0 & 0 & cdots & a & 1 & 0\
          0 & 0 & 0 & cdots & 1 & a & 1\
          0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$



          $$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
          Determinants $D_n$ is Chebyshev polynomials of the second kind:
          $$D_n=U_nleft(frac{a}2right)$$
          https://en.wikipedia.org/wiki/Chebyshev_polynomials



          http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
            $endgroup$
            – Mani Jha
            Jan 7 at 11:43










          • $begingroup$
            Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
            $endgroup$
            – Mani Jha
            Jan 8 at 10:44











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064594%2fdeterminant-of-this-n-x-n-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          $$D_n=begin{vmatrix}
          a & 1 & 0 & cdots & 0 & 0 & 0\
          1 & a & 1 & cdots & 0 & 0 & 0\
          0 & 1 & a & cdots & 0 & 0 & 0\
          cdots & cdots & cdots & cdots &cdots & cdots & cdots\
          0 & 0 & 0 & cdots & a & 1 & 0\
          0 & 0 & 0 & cdots & 1 & a & 1\
          0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$



          $$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
          Determinants $D_n$ is Chebyshev polynomials of the second kind:
          $$D_n=U_nleft(frac{a}2right)$$
          https://en.wikipedia.org/wiki/Chebyshev_polynomials



          http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
            $endgroup$
            – Mani Jha
            Jan 7 at 11:43










          • $begingroup$
            Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
            $endgroup$
            – Mani Jha
            Jan 8 at 10:44
















          0












          $begingroup$

          $$D_n=begin{vmatrix}
          a & 1 & 0 & cdots & 0 & 0 & 0\
          1 & a & 1 & cdots & 0 & 0 & 0\
          0 & 1 & a & cdots & 0 & 0 & 0\
          cdots & cdots & cdots & cdots &cdots & cdots & cdots\
          0 & 0 & 0 & cdots & a & 1 & 0\
          0 & 0 & 0 & cdots & 1 & a & 1\
          0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$



          $$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
          Determinants $D_n$ is Chebyshev polynomials of the second kind:
          $$D_n=U_nleft(frac{a}2right)$$
          https://en.wikipedia.org/wiki/Chebyshev_polynomials



          http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
            $endgroup$
            – Mani Jha
            Jan 7 at 11:43










          • $begingroup$
            Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
            $endgroup$
            – Mani Jha
            Jan 8 at 10:44














          0












          0








          0





          $begingroup$

          $$D_n=begin{vmatrix}
          a & 1 & 0 & cdots & 0 & 0 & 0\
          1 & a & 1 & cdots & 0 & 0 & 0\
          0 & 1 & a & cdots & 0 & 0 & 0\
          cdots & cdots & cdots & cdots &cdots & cdots & cdots\
          0 & 0 & 0 & cdots & a & 1 & 0\
          0 & 0 & 0 & cdots & 1 & a & 1\
          0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$



          $$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
          Determinants $D_n$ is Chebyshev polynomials of the second kind:
          $$D_n=U_nleft(frac{a}2right)$$
          https://en.wikipedia.org/wiki/Chebyshev_polynomials



          http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html






          share|cite|improve this answer









          $endgroup$



          $$D_n=begin{vmatrix}
          a & 1 & 0 & cdots & 0 & 0 & 0\
          1 & a & 1 & cdots & 0 & 0 & 0\
          0 & 1 & a & cdots & 0 & 0 & 0\
          cdots & cdots & cdots & cdots &cdots & cdots & cdots\
          0 & 0 & 0 & cdots & a & 1 & 0\
          0 & 0 & 0 & cdots & 1 & a & 1\
          0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$



          $$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
          Determinants $D_n$ is Chebyshev polynomials of the second kind:
          $$D_n=U_nleft(frac{a}2right)$$
          https://en.wikipedia.org/wiki/Chebyshev_polynomials



          http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 7 at 8:26









          Aleksas DomarkasAleksas Domarkas

          1,54817




          1,54817












          • $begingroup$
            Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
            $endgroup$
            – Mani Jha
            Jan 7 at 11:43










          • $begingroup$
            Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
            $endgroup$
            – Mani Jha
            Jan 8 at 10:44


















          • $begingroup$
            Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
            $endgroup$
            – Mani Jha
            Jan 7 at 11:43










          • $begingroup$
            Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
            $endgroup$
            – Mani Jha
            Jan 8 at 10:44
















          $begingroup$
          Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
          $endgroup$
          – Mani Jha
          Jan 7 at 11:43




          $begingroup$
          Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
          $endgroup$
          – Mani Jha
          Jan 7 at 11:43












          $begingroup$
          Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
          $endgroup$
          – Mani Jha
          Jan 8 at 10:44




          $begingroup$
          Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
          $endgroup$
          – Mani Jha
          Jan 8 at 10:44


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064594%2fdeterminant-of-this-n-x-n-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna